Logistics Management

Functional Users Manual for the Army Maintenance Management System—Aviation (TAMMS-A)
DA PAM 738-751
Functional Users Manual for the Army Maintenance Management System—Aviation (TAMMS-A)

This revision—

- Adds an Aircraft Transfer Decision Table (chap 1).
- Converts the removal/achievement codes back to failure codes (chap 1).
- Adds procedures for the Unit Level Logistics System-Aviation (chaps 1, 2, 3, and 4).
- Introduces DA Form 2408-14-1 (Uncorrected Fault Record Aircraft) (chap 2). DA Form 2408-14 (Uncorrected Fault Record) will no longer be used for aviation equipment.
- Incorporates Standard Army Maintenance System procedures (chap 3).
- Adds procedures for documentation of component repair at Aviation Intermediate Maintenance and depot levels of maintenance (chap 3).
- Adds phase maintenance and periodic inspection documentation procedures (chap 3).
- Adds information on migrating automated DA Form 2410 (Component Removal and Repair/Overhaul Record) data (chap 3).
- Changes DA Form 2410 and instructions. Therefore, the U.S. Army Aviation and Missile Command's Guide/Workbook for the DA Form 2410, The Army Maintenance Management System Aviation (TAMMS-A), October 1992, is obsolete (chap 3).
- Adds instructions for DA Form 2408-16 (Aircraft Component Historical Record) and DA Form 2410 to track aircraft survivability equipment electronic countermeasures and avionics systems Line Replaceable Units that have software installed (chaps 3 and 4).
- Incorporates the forms and records instructions published in TB 1-2840-248-20-2 (One Time Inspection and Conversion of Forms and Records for T700, 701, and 701C Series Gas Turbine Engines) (chaps 3 and 4).
- Incorporates the forms and records instructions published in TB 1-2840-214-20-1 (One Time Inspection of Forms and Records for H-60 Series Aircraft Auxiliary Power Units) (chaps 3 and 4).
- Adds DA Form 2408-33-R (Meter Tracked Component Record) and instructions for tracking countermeasure set, AN/ALQ-144A (chap 4).
- Incorporates the forms and records instructions published in TB 55-1520-238-23 (AH-64A Components Requiring Maintenance Management and Historical Data) (chap 4).
- Adds Aviation Life Support Equipment and Aviation Night Vision Goggle recordkeeping procedures (chap 5).

- Changes DA Form 2408-25 (Mesh Net Survival Vest Inspection Record) to include first aid components (chap 5).

- Discontinues use of DA Form 2409 (Equipment Maintenance Log Consolidated) for aircraft and aviation associated equipment use.

- Rescinds DA Form 2408-5-2 (Equipment Modification Record).

- Rescinds DA Form 2408-32, (Jet Fuel Conversion Chart).

- Rescinds DA Form 5504 and 5504-1, (Maintenance Request and Continuation Sheet (SAMS)).
History. This is a revision of this publication. Graphics that were incomplete in the printed copy have been corrected in this electronic edition.

Summary. This pamphlet covers the preparation and management of forms and records needed to manage maintenance, control the use, and report warranty actions and deficiencies on Army aircraft and aviation associated equipment.

Applicability.

a. This pamphlet applies to the Active Army, US Army National Guard of the United States (ARNGUS), US Army Reserve (USAR), Department of Defense (DOD), and other Government agencies that operate and maintain Army aircraft.

b. This pamphlet also applies to all aircraft and aviation associated equipment operated, maintained, and stored by DOD contract support maintenance activities.

c. During mobilization, chapters and policies contained in this pamphlet may be modified by the proponent.

Proponent and exception authority. The proponent of this pamphlet is the Deputy Chief of Staff for Logistics. The proponent has the authority to approve exceptions to this pamphlet that are consistent with controlling law and regulations. Proponents may delegate the approval authority, in writing, to a division chief within the proponent agency in the grade of colonel or the civilian equivalent.

Suggested Improvements. Users are invited to send comments and suggested improvements on DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-RE-FF, Redstone Arsenal, Huntsville, AL 35898-5230. You may also submit your recommended changes by e-mail directly to (waldeck-ab@exchange1.redstone.army.mil). The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

Distribution. Distribution of this publication is made in accordance with initial distribution number (IDN) 092374, intended for command levels A, B, C, D, and E for Active Army, the Army National Guard of the United States, U.S. Army Reserve, and other Government Agencies.
Contents—Continued

Excess, Deteriorated, Crash Damaged, or Destroyed U.S. Army Aircraft Transferred to Defense Reutilization and Marketing Office • 1–17, page 9

Aircraft transferred to other Government agencies and the Military Assistance Program • 1–18, page 10

Aircraft used for static display or transferred to museums • 1–19, page 11

Aircraft and components used for maintenance training • 1–20, page 11

U.S. Army aircraft loaned or bailed, or procured for other U.S. Government departments and agencies • 1–21, page 11

Classifying records and reports • 1–22, page 12

Unit Level Logistics System-Aviation and Logbook Automated System • 1–23, page 12

Aircraft Quality Control Program • 1–24, page 13

Aircraft weight and balance Control • 1–25, page 13

Aviation night vision goggles maintenance • 1–26, page 13

Standard Army Maintenance System • 1–27, page 13

Aircraft component/module repair • 1–28, page 14

Chapter 2

Aircraft Logbook Forms and Records, page 25

General-aircraft logbook forms and records • 2–1, page 25

Logbook Binder (NSN 7510–00–889–3494 (2 1/2 inch)) • 2–2, page 25

DA Form 2408, Equipment Log Assembly • 2–3, page 25

DA Form 2408–31, Aircraft Identification Card • 2–4, page 25

DA Form 2408–4–1, Weapon Record Data • 2–5, page 25

DA Form 2408–4–2, Weapon Sight Record (OH-58D) • 2–6, page 26

DA Form 2408–4–3, Weapon Sight Data (AH-64A) • 2–7, page 26

DA Form 2408–12, Army Aviator’s Flight Record • 2–8, page 26

DA Form 2408–13, Aircraft Status Information Record • 2–9, page 27

DA Form 2408–13–1, Aircraft Inspection and Maintenance Record • 2–10, page 28

DA Forms 2408–13–2, Related Maintenance Actions Record • 2–11, page 30

DA Form 2408–14–1, Uncorrected Fault Record (Aircraft) • 2–12, page 31

DA Form 2408–18, Equipment Inspection List • 2–13, page 31

Chapter 3

Maintenance Forms and Records, page 61

General maintenance forms • 3–1, page 61

Product quality deficiency reports • 3–2, page 61

PQDR exhibits • 3–3, page 64

Reporting initial failure of a stock-funded depot level reparable item • 3–4, page 66

DA Form 2402, Exchange tag • 3–5, page 66

DA Form 2332, Joint Message Form (Category I Deficiency Report). • 3–7, page 66

DA Form 2405, Maintenance Request Register. • 3–10, page 69

DA Form 2407, Maintenance Request, and DA Form 2407–1, Maintenance Request Continuation Sheet. • 3–11, page 69

Maintenance inspection checklist • 3–12, page 71

DA Form 2410, Component Removal and Repair/Overhaul Record (RCS CSGLD-1052 (R3)). • 3–13, page 72

DA Form 2410, Gains to Inventory. • 3–14, page 73

DA Form 2410, Normal Removal, Repair, Overhaul/Rebuild and Installation. • 3–15, page 73

DA Form 2410, Changes from Serviceable to Unserviceable Status for Uninstalled Items. • 3–16, page 74

DA Form 2410, NSN/PN/Serial Number (SN) Changes. • 3–17, page 74

DA Form 2410, Removal of Serviceable Reportable Items for Controlled Exchange. • 3–18, page 74

DA Form 2410, Loss to Inventory. • 3–19, page 74

Materiel Condition Tags/Labels on Uninstalled Aviation Equipment and Aviation Associated Equipment. • 3–20, page 74

Supply condition codes. • 3–21, page 75

DD Form 1574, Serviceable Tag-Materiel, and DD Form 1574–1, Serviceable Label-Materiel, (Yellow). • 3–22, page 75

DD Form 1575, Suspended Tag-Materiel, and DD Form 1575–1, Suspended Label-Materiel, (Brown). • 3–23, page 75

DD Form 1576, Test/Modification Tag-Materiel, and DD Form 1576–1, Test/Modification Label-Materiel, (Blue). • 3–24, page 75

DD Form 1577, Unserviceable (Condemned) Tag-Materiel, and DD Form 1577–1, Unserviceable (Condemned) Label-Materiel, (Red). • 3–25, page 75

DD Form 1577–2, Unserviceable (Reparable) Tag-Materiel, and DD Form 1577–3 Unserviceable (Reparable) Label-Materiel, (Green). • 3–26, page 75

Chapter 4

Historical Forms and Records, page 159

General-historical forms • 4–1, page 159

Missing historical records or information. • 4–2, page 159

DA Form 2408–5, Equipment Modification Record. • 4–3, page 159

DA Form 2408–5–1, Equipment Modification Record (Component). • 4–4, page 160

DA Form 2408–15, Historical Record for Aircraft. • 4–5, page 160

DA Form 2408–15–2, Aircraft Vibration Record. • 4–6, page 161

DA Form 2408–16, Aircraft Component Historical Record. • 4–7, page 161

DA Form 2408–16–1, History Recorder, Component, Module Record. • 4–8, page 162

DA Form 2408–17, Aircraft Inventory Record. • 4–9, page 163

DA Form 2408–19, Aircraft Engine Turbine Wheel Historical Record. • 4–10, page 164

DA Form 2408–19–1, TS3/T55 Turbine Engine Analysis Check Record. • 4–11, page 164

DA Form 2408–19–2, T700 Series Turbine Engine Analysis Check Record. • 4–12, page 164

DA Form 2408–19–3, Engine Component Operating Hours Record. • 4–13, page 165

DA Form 2408–20, Oil Analysis Log. • 4–14, page 165

DA Form 2408–33–R, Meter Tracked Component Record • 4–15, page 165

Chapter 5

Aviation Life Support Equipment and Aviation Night Vision Goggles Forms and Records Procedures, page 218

General • 5–1, page 218

DA Form 2407, Maintenance Request, and DA Form 2407–1, Maintenance Request Continuation Sheet. • 5–2, page 218

DA Form 2408–5, Equipment Modification Record. • 5–3, page 218

DA Form 2408–15, Historical Record for Aircraft • 5–4, page 219

DA Form 2408–21, Life Raft Inspection Record. • 5–5, page 219

DA Form 2408–22, Helmet and Oxygen Mask/Connector Inspection Record. • 5–6, page 219

DA Form 2408–23, Survival Radio/Emergency Location Transmitter Inspection Record. • 5–7, page 219

DA Form 2408–24, Survival Kit Inspection and Maintenance Record. • 5–8, page 219
Contents—Continued

DA Form 2408–25, Mesh Net Survival Vest Inspection Record. • 5–9, page 220
DA Form 2408–26, Life Preserver Inspection Record. • 5–10, page 220
DA Form 2408–27, Life Preserver Data. • 5–11, page 220
DA Form 2408–28, Oxygen Console Service Record. • 5–12, page 220
DA Form 2408–29, Anti-Exposure Coveralls Inspection Record. • 5–13, page 220
DA Form 2408–30, NVG Inspection and Maintenance Record. • 5–14, page 220
DD Forms 1574/1574–1, 1575/1575–1, 1576/1576–1, 1577/1577–1, Tags/Labels (Material). • 5–15, page 220

Table D–1: DA FORMS TO BE MAINTAINED (page 2), page 252
Table D–1: DA FORMS TO BE MAINTAINED (page 3), page 253
Table D–1: DA FORMS TO BE MAINTAINED (page 4), page 254
Table D–1: DA FORMS TO BE MAINTAINED (page 5), page 254
Table E–1: List of Aircraft and their National Stock Numbers, page 254

Figure List
Figure 2–1: Sample Logbook Binder, page 33
Figure 2–2A: Sample of an Equipment Log Assembly (DA Form 2408) (Illustration #1, Front), page 34
Figure 2–2B: Sample of a Equipment Log Assembly (DA Form 2408) (Illustration #2, Reverse), page 35
Figure 2–3: Sample of a completed DA Form 2408–31 (Aircraft Identification Card), page 36
Figure 2–4: Sample of a completed DA Form 2408–4–1 (Weapon Record Data), page 37
Figure 2–5: Sample of a completed DA Form 2408–4–2 (Weapon Sighting Data OH-58D), page 38
Figure 2–6: Sample of a completed DA Form 2408–4–3 (Weapon Sighting Data AH-64A), page 39
Figure 2–7A: Sample of a completed DA Form 2408–12–12 (Army Aviators Flight Record) (Illustration #1), page 41
Figure 2–7B: Sample of a completed DA Form 2408–12–12 (Army Aviators Flight Record) (Illustration #2), page 43
Figure 2–8A: Sample of a completed DA Form 2408–13 (Aircraft Status Information Record) (Illustration #1), page 45
Figure 2–8B: Sample of a completed DA Form 2408–13 (Aircraft Status Information Record) (Illustration #2), page 46
Figure 2–9A: Sample of a completed DA Form 2408–13–1 (Aircraft Inspection and Maintenance Record) (Illustration #1), page 49
Figure 2–9B: Sample of a Completed DA Form 2408–13–1 (Aircraft Inspection and Maintenance Record) (Illustration #2), page 50
Figure 2–9C: Sample of a completed DA Form 2408–13–1 (Aircraft Inspection and Maintenance Record) (Illustration #3), page 51
Figure 2–10A: Sample of a completed DA Form 2408–13–2 (Related Maintenance Actions Record) (Illustration #1, Front), page 55
Figure 2–10B: Sample of a completed DA Form 2408–13–2 (Related Maintenance Actions Record) (Illustration #2, Reverse), page 56
Figure 2–11: Sample of a completed DA Form 2408–13–2 (Related Maintenance Action Record) (Component Repair), page 57
Figure 2–12: Sample of a completed DA Form 2408–14–1 (Uncorrected Fault Record) (Aircraft), page 59
Figure 2–13: Sample of a completed DA Form 2408–18 (Equipment Inspection List), page 60
Figure 3–1: Sample of a DA Form 2402 Exchange Tag, page 80
Figure 3–2: Sample of a completed DD Form 2332 (Product Quality Deficiency Report Exhibit), page 82
Figure 3–3A: Sample of a completed Category I Deficiency Report (message format), page 84
Figure 3–3B: Sample of a completed Category I Deficiency Report (message format), page 85
Figure 3–3C: Sample of a completed Category I Deficiency Report (message format), page 86
Figure 3–3D: Sample of a completed Category I Deficiency Report (message format), page 87
Figure 3–4A: Sample of a completed SF 368 for a Category II Deficiency Report, page 91

Appendixes

A. References, page 246
B. Nuclear, Biological, and Chemical Detection-Decontamination Documentation Procedures, page 248
C. Supply Condition Codes, page 249
D. Department of the Army list of Aircraft and Aviation Associated Equipment on which forms and records are to be maintained, page 250
E. List of Aircraft and their National Stock Numbers, page 254

Table List

Table 1–1: Red "X" Conditions for Aviation Equipment, page 14
Table 1–2: Failure Codes—Alphabetical, page 15
Table 1–3: Failure Codes—Numerical, page 18
Table 1–4: When Discovered Codes, page 20
Table 1–5: How Recognized Codes, page 20
Table 1–6: Malfunction Effect Codes, page 20
Table 1–7: System Codes, page 20
Table 1–8: DA Form 2408-18 Frequency Codes, page 20
Table 1–9: Maintenance Action Codes, page 20
Table 1–10: Functional Group Codes, page 21
Table 1–11: Utilization Codes, page 21
Table 1–12: Time Conversion Codes, page 22
Table 1–13: Equipment Loss Codes, page 22
Table 1–14: Equipment Gain Codes, page 22
Table 1–15: Not Reparable This Station Codes (NRTS), page 23
Table 1–16: Type Maintenance Request Code (Type MNT Req CD) or Repair, page 23
Table 1–17: Work Request Status Codes (STA), page 23
Table 1–18: Part Source Code, page 24
Table 1–19: The Metric System and Equivalents, page 24
Table 1–20: Aircraft Transfer Decision Table, page 24
Table 3–1: SSCOM (TROOP) QDR Action Point Address, page 63
Table 3–2: TACOM-ARDEC QDR Action Point Address, page 63
Table 3–3: CECOM QDR Action Point Address, page 63
Table 3–4: AMCOM QDR Action Point Address, page 63
Table 3–5: IOC QDR Action Point Address, page 64
Table 3–6: IOC QDR Action Point Address, page 64
Table 3–7: Logistic Assistance Offices and Logistic Assistance Representatives, page 76
Table 3–8: Sample of a Maintenance Records Checklist, page 78
Table 3–9: AMCOM Modification Work Order Contract Field Team Application Facility Addresses and Geographical Support Areas, page 79
Table B–1: Legend: Nuclear, Biological, and Chemical Detection-Decontamination Documentation Procedures, page 249
Table C–1: Supply Condition Codes, page 249
Table D–1: DA FORMS TO BE MAINTAINED (page 1), page 251

DA PAM 738–751 • 15 March 1999

iii
Figure 3–4B: Sample of a completed SF 368 for a Category II Deficiency Report, page 92
Figure 3–5: Sample of a completed DA Form 2408–13–3 (Aircraft Technical Inspection Worksheet) (Technical Inspection), page 95
Figure 3–6: Sample of a completed DA Form 2408–13–3 (Aircraft Technical Inspection Worksheet) (Component Repair), page 96
Figure 3–7: Sample of a completed DA Form 2405, Maintenance Request Register, page 99
Figure 3–8: Sample of a completed DA Form 2407 to request support maintenance., page 100
Figure 3–9: Sample of a completed DA Form 2407 to show work done at support maintenance, page 103
Figure 3–10: Sample of a completed DA Form 2407 to request application of an MWO, page 107
Figure 3–11: Sample of a completed DA Form 2407 to report an MWO done at Support Maintenance, page 110
Figure 3–12: Sample of a completed page of a phase maintenance checklist, page 113
Figure 3–13: Sample of a completed DA Form 2408–13–2 used to document disassembly to complete an inspection requirement during phase maintenance, page 115
Figure 3–14A: Sample of a completed DA Form 2410 for gain to the Army inventory. (Illustration #1), page 117
Figure 3–14B: Sample of a completed DA Form 2410 for gain to the Army inventory. (Illustration #2), page 118
Figure 3–15: Sample of a completed DA Form 2410 for the normal removal, evacuation, repair, and installation cycle. (Removal and Evacuation), page 120
Figure 3–16: Sample of a completed DA Form 2410 for normal removal, evacuation, repair, and installation cycle (Repair/Overhaul), page 123
Figure 3–17: Sample of a completed DA Form 2410. Reverse of copy #2., page 125
Figure 3–18: Sample of a completed DA Form 2410 for the Normal Evacuation Repair and Installation Cycle, (Installation), page 126
Figure 3–19: Sample of a completed DA Form 2410 for change from serviceable to unserviceable uninstalled items. (Installation), page 128
Figure 3–20A: Sample of a completed DA Form 2410 for an NSN/PN/serial number change for an installed item. (Illustration #1), page 129
Figure 3–20B: Sample of a completed DA Form 2410 for an NSN/PN/serial number change for an uninstalled item. (Illustration #2), page 130
Figure 3–21A: Sample of a completed DA Form 2410 for a NSN/PN/serial number change for an installed item. (Illustration #1), page 132
Figure 3–21B: Sample of a completed DA Form 2410 for a NSN/PN/serial number change for an installed item. (Illustration #2), page 133
Figure 3–21C: Sample of a completed DA Form 2410 for an NSN/PN/serial number change for an installed item. (Illustration #3), page 134
Figure 3–21D: Sample of a completed DA Form 2410 for a NSN/PN/serial number change for an installed item. (Illustration #4), page 135
Figure 3–22: Sample of a completed DA Form 2410 when a serviceable reportable item is removed for controlled exchange. (Identification and Removal Data), page 139
Figure 3–23: Sample of a completed DA Form 2410 when a serviceable reportable item is removed for controlled exchange. (Installation Data), page 141
Figure 3–24A: Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code of "D" or "J" is used. (Illustration #1), page 143
Figure 3–24B: Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code of "M" is used. (Illustration #2), page 144
Figure 3–25A: Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code other than "D", "J", or "M" is used. (Illustration #1), page 147
Figure 3–25B: Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code other than "D", "J", or "M" is used. (Illustration #2), page 148
Figure 3–26: Sample of a completed DD Form 1574 and DD Form 1574–1, Serviceable Tag/Label-Materiel (Color Yellow), page 151
Figure 3–27: Sample of a completed DD Form 1575 and DD Form 1575–1, Suspended Tag/Label-Materiel (Color Brown), page 152
Figure 3–28A: Sample of a completed DD Form 1576 and DD Form 1576–1, Test/Modification Tag/Label-Materiel (Color Blue); Illustration #1, page 154
Figure 3–28B: Sample of a completed DD Form 1576 and DD Form 1576–1, Test/Modification Tag/Label-Materiel (Color Blue); Illustration #2, page 155
Figure 3–29: Sample of a completed DD Form 1577 and DD Form 1577–1, Unserviceable (Condemned) Tag/Label-Materiel (Color Red), page 156
Figure 3–30: Sample of a completed DD Form 1577–2 and DD Form 1577–3, Unserviceable (Reparable) Tag/Label-Materiel (Color Green), page 158
Figure 4–1: Sample of a completed DA Form 2408–5, Equipment Modification Record, page 166
Figure 4–2: Sample of a completed DA Form 2408–5–1, Equipment Modification Record (Component), page 168
Figure 4–3: Sample of a completed DA Form 2408–15, Historical Record For Aircraft, page 169
Figure 4–4: Sample of a completed DA Form 2408–15–2, Aircraft Vibration Record, page 170
Figure 4–5A: Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Time Change Components) (Illustration #1), page 171
Figure 4–5B: Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Time Change Components) (Illustration #2), page 172
Figure 4–5C: Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Condition Items) (Illustration #3), page 173
Figure 4–5D: Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Major Component Form) (Illustration #4), page 174
Figure 4–5E: Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Major Component Form) (Illustration #5), page 175
Figure 4–6A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. T700 series engine showing major modules and components. (Illustration #1), page 178
Figure 4–6B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. T700 series engine showing major modules and components. (Illustration #2), page 179
Figure 4–6C: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. T700 series engine showing major modules and components. (Illustration #3), page 180
Contents—Continued

Figure 4–7A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. New T700 series engines, components or modules for spares. (Illustration #1), page 182

Figure 4–7B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. New T700 series engines, components or modules for spares. (Illustration #2), page 183

Figure 4–8A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Removal of a module from a T700 series engine. (Illustration #1), page 185

Figure 4–8B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Installation of a module on a T700 series engine. (Illustration #2), page 186

Figure 4–8C: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Installation of a module on a T700 series engine. (Illustration #3), page 187

Figure 4–9A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair of a T700 series engine module. (Illustration #1, Front), page 189

Figure 4–9B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair of a T700 series engine module. (Illustration #2, Reverse), page 190

Figure 4–10A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Replacement of a T700 series engine history recorder. (Illustration #1), page 192

Figure 4–10B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Replacement of a T700 series engine history recorder. (Illustration #2), page 193

Figure 4–11A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair or overhaul of a H-60 series aircraft APU. (Illustration #1, Front), page 194

Figure 4–11B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair or overhaul of a H-60 series aircraft APU. (Illustration #2, Reverse), page 195

Figure 4–12A: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Field replacement (Installation) of a H-60 series aircraft APU) (Illustration #1), page 197

Figure 4–12B: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Field replacement (Removal) of a H-60 series aircraft APU) (Illustration #2), page 198

Figure 4–12C: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Field replacement (Controlled Substitution) of a H-60 series aircraft APU) (Illustration #3), page 199

Figure 4–13: Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Replacement of a hourmeter on a H-60 series aircraft APU. page 201

Figure 4–14A: Sample of a completed DA Form 2408–17. Aircraft Inventory Record. (Illustration #2, Front), page 203

Figure 4–14B: Sample of a completed DA Form 2408–17. Aircraft Inventory Record. (Illustration #2, Reverse), page 204

Figure 4–15A: Sample of a completed DA Form 2408–19. Aircraft Engine Turbine Wheel Historical Record (Illustration #1, Front), page 205

Figure 4–15B: Sample of a completed DA Form 2408–19. Aircraft Engine Turbine Wheel Historical Record (Illustration #2, Reverse), page 206

Figure 4–16A: Sample of a completed DA Form 2408–19–1. T53/ T55 Turbine Engine Analysis Check Record (Illustration #1), page 208

Figure 4–16B: Sample of a completed DA Form 2408–19–1. T53/ T55 Turbine Engine Analysis Check Record (Illustration #2), page 209

Figure 4–17: Sample of a completed DA Form 2408–19–2. T700 Series Turbine Engine Analysis Check Record (Illustration #2), page 210

Figure 4–18: Sample of a completed DA Form 2408–19–3. Engine Component Operating Hours Record, page 212

Figure 4–19A: Sample of a completed DA Form 2408–20. Oil Analysis Log (Illustration #1, Front), page 213

Figure 4–19B: Sample of a completed DA Form 2408–20. Oil Analysis Log (Illustration #2, Reverse), page 214

Figure 4–20A: Sample of a completed DA Form 2408–23–3.R. Meter Tracked Component Record (Illustration #1, Front), page 216

Figure 4–20B: Sample of a completed DA Form 2408–23–3.R. Meter Tracked Component Record (Illustration #2, Reverse), page 217

Figure 5–1: Sample of a completed DA Form 2408–5, Equipment Modification Record., page 222

Figure 5–2: Sample of a completed DA Form 2408–15, Historical Record for Aircraft, page 223

Figure 5–3A: Sample of a completed DA Form 2408–21, Life Raft Inspection Record (Illustration #1, Front), page 224

Figure 5–3B: Sample of a completed DA Form 2408–21, Life Raft Inspection Record (Illustration #2, Reverse), page 225

Figure 5–4: Sample of a completed DA Form 2408–22, Helmet and Oxygen Mask/Connector Inspection record, page 227

Figure 5–5: Sample of a completed DA Form 2408–23, Survival Radio/Emergency Locator Transmitter Inspection Record, page 228

Figure 5–6A: Sample of a completed DA Form 2408–24, Survival Kit Inspection and Maintenance Record (Illustration #1, Front), page 229

Figure 5–6B: Sample of a completed DA Form 2408–24, Survival Kit Inspection and Maintenance Record (Illustration #2, Reverse) page 230

Figure 5–7A: Sample of a completed DA Form 2408–25, Mesh Net Survival Vest Inspection Record (Illustration #1, Front), page 231

Figure 5–7B: Sample of a completed DA Form 2408–25, Mesh Net Survival Vest Inspection Record (Illustration #2, Reverse), page 232

Figure 5–8A: Sample of a completed DA Form 2408–26, Life Preserver Inspection Record (Illustration #1, Front), page 233

Figure 5–8B: Sample of a completed DA Form 2408–26, Life Preserver Inspection Record (Illustration #2, Reverse), page 234

Figure 5–9A: Sample of a completed DA Form 2408–27, Life Preserver Data (Illustration #1, Front), page 236

Figure 5–9B: Sample of a completed DA Form 2408–27, Life Preserver Data (Illustration #2, Reverse), page 237

Figure 5–10A: Sample of a completed DA Form 2408–28, Oxygen Console Service Record (Illustration #1, Front), page 238

Figure 5–10B: Sample of a completed DA Form 2408–28, Oxygen Console Service Record (Illustration #2, Reverse), page 239

Figure 5–11A: Sample of a completed DA Form 2408–29, Anti-Exposure Coveralls Inspection Record (Illustration #1, Front), page 240

Figure 5–11B: Sample of a completed DA Form 2408–29, Anti-Exposure Coveralls Inspection Record (Illustration #2, Reverse), page 241

Figure 5–12A: Sample of a completed DA Form 2408–30, NVG Inspection and Maintenance Record (Illustration #1, Front), page 242

Figure 5–12B: Sample of a completed DA Form 2408–30, NVG Inspection and Maintenance Record (Illustration #2, Reverse), page 243

DA PAM 738–751 • 15 March 1999
Chapter 1
Introduction

1–1. Purpose
a. This pamphlet provides instructions for the use, preparation, and disposition of forms and records. The forms and records are used to control and manage aircraft, aviation-associated equipment, mission related equipment, and maintenance. AR 750–1 sets the policy for keeping records and AR 750–2 prescribes policy for evaluation, analysis, and use of data entered and collected on forms and records outlined in this pamphlet.

b. The forms and records are used to—
 (1) Control operations.
 (2) Control and manage maintenance of aircraft, aviation-associated equipment, and mission-related equipment.
 (3) Track aircraft components, modules and flight safety parts, by serial number, to support reconstruction of aircraft component historical records for component configuration, and maintenance and failure analysis.
 (4) Track configuration, application of Department of the Army (DA) Modification Work Orders (MWOs), Safety-Of-Flight (SOF) messages, Aviation Safety Action Messages (ASAMs), Safety-Of-Use (SOU) messages, and Technical Bulletins (TBs) on aircraft, aviation-associated equipment, and reportable components.
 (5) Collect maintenance performance and related logistic data to perform maintenance analysis for possible redesign and improvement of fielded aviation equipment per AR 750–2 and DA Pamphlet 700–126.
 (6) Submit deficiency reports, such as Equipment Improvement Recommendations (EIRs) and Product Quality Deficiency Reports (PQDRs).
 (7) Evaluate aviation materiel condition in support of aircraft and aviation-associated equipment readiness and safety.

1–2. References
Required and related publications and prescribed and referenced forms are listed in appendix A.

1–3. Explanation of abbreviations and terms
Abbreviations and special terms used in this pamphlet are explained in the glossary or the aircraft maintenance publication that applies. Other military terms are defined in AR 310–25 and abbreviations are in AR 310–25. The terms, in quotation marks (" "), used as correcting information on aircraft forms are for illustration purposes only. The quotation marks do not mean that the term(s) have to be used exactly as written. It is not an error to abbreviate or alter the term(s), as long as the information is correctly described.

1–4. Types of records
a. Aircraft logbook forms and records. Aircraft logbook forms and records are filed in the aircraft logbook for easy access by the aircrew, maintenance, and quality control personnel. The aircraft logbook is made up of a combination of operational and maintenance forms and records that provide a record of the following:
 (1) Aircraft/aircrew flight information and servicing data.
 (2) Engine operational data.
 (3) Weapon(s) firing data.
 (4) When the next scheduled maintenance inspection is due.
 (5) When the next special inspection or item replacement is due.
 (6) Faults and correcting information.
 (7) Aircraft and mission-related equipment condition status.
 (8) Related maintenance actions.
 (9) Uncorrected or deferred faults or maintenance.
 (10) Rounds fired from weapon systems installed in each aircraft.
 (11) Cumulative rounds fired from all prior weapons installed on the aircraft.
 (12) Identification plates for refueling of aircraft away from the home station.

b. Historical records. Historical records are permanent records of historical data for aircraft, time change (TC), retirement change (RC), and condition change (CC) components. Historical records are not part of the logbook. They are normally filed in the production control or quality control (QC) shop. They keep a record of:
 (1) MWOs, SOF messages, ASAMs, SOU messages, and TBs on aircraft, selected components, and other aviation equipment.
 (2) All significant events on the aircraft and components.
 (3) Results of turbine engine analysis checks (TEACs) and/or max power checks.
 (4) Receipt, transfer, and disposal of aviation equipment.
 (5) Software version of software installed on aircraft survivability electronic countermeasures and avionics systems line replaceable units (LRUs).
 (6) T700 series engines operating hours, history recorder readings, and significant events on the engines.

1–5. Tables and appendixes
a. Information in tables 1–1 through 1–20, at the end of chapter 1, applies to aviation equipment, forms, and records. The tables contain the codes used on forms and records throughout this pamphlet. These codes and other data are extracted from forms received at the National Maintenance Point (NMP) and placed in computer data bases. The data is then analyzed to identify areas having an adverse impact on the operational needs and readiness objectives of aviation equipment. The following tables will be used for completing operational, maintenance, and historical forms:
 (1) Table 1–1 Red “X” Conditions for Aviation Equipment.
 (2) Table 1–2 Failure Codes — Alphabetical.
 (3) Table 1–3 Failure Codes — Numerical.
 (4) Table 1–4 When Discovered Codes.
 (5) Table 1–5 How Recognized Codes.
 (6) Table 1–6 Malfunction Effect Codes.
 (7) Table 1–7 System Codes.
 (8) Table 1–8 DA Form 2408–18 Frequency Codes.
 (9) Table 1–9 Maintenance Action Codes.
 (10) Table 1–10 Functional Group Codes.
 (11) Table 1–11 Utilization Codes.
 (12) Table 1–12 Time Conversion Codes.
 (13) Table 1–13 Equipment Loss Codes.
 (14) Table 1–14 Equipment Gain Codes.
 (15) Table 1–15 Not Reparable This Station Codes (NRTS).
 (16) Table 1–16 Type Maintenance Request Codes (Type MNT Req CD).
 (17) Table 1–17 Work Request Status Codes (STA).
 (18) Table 1–18 Part Source Code.
 (19) Table 1–19 The Metric System and Equivalents.
 (20) Table 1–20 Aircraft Transfer Decision Matrix.

b. Information in the appendixes applies to aviation equipment forms and records. Appendix A lists the required and related publications needed to use this pamphlet. Appendix B explains the procedures needed for operation in a nuclear, biological, or chemical environment. Appendix C lists supply condition codes used to prepare other forms, records, and materiel condition tags/labels. Appendix D lists aircraft and aviation associated equipment with their required forms and records.

1–6. General instructions
a. Specific details on how to use, fill out, process, and dispose of aviation equipment forms and records will be found in the related chapters. Unless the specific instructions for the form or record state otherwise, the following rules apply:
 (1) “Not applicable,” “not required,” or “N/A” entries will be left blank.
 (2) All entries on the forms will be printed or typed except personal signatures, initials, and stamps. All logbook and maintenance form and record entries may be made in blue or black ball-point pen, black lead pencil, stamp, or they will be Unit Level
Logistics System-Aviation (ULLS-A) or Logbook Automated System (LAS) generated unless the specific instructions state otherwise. Historical record entries will be made in blue or black ball-point pen, typewritten, ULLS-A, or LAS generated unless the specific instructions state to use pencil. The entry for total number of pages, on manually maintained forms, will be entered using black lead pencil. Use a red lead pencil or ball-point pen with red ink, to make aircraft and aviation-associated equipment condition status symbols, except the no defect symbol (last name initial). Status symbols that are computer generated by the ULLS-A or LAS programs are printed in black ink. Typed or stamped entries must be in blue or black ink. On materiel condition tags/labels use blue or black waterproof ink, because rain, snow or other moisture can smear the ink and important data will be lost.

(3) The minimum requirement to certify entries on all forms governed by this pamphlet is the Personnel Identifier (PID). The PID is made up with the first and last name initials, plus last four numbers of the person’s Social Security Account Number (SSAN). Commander’s (CDR(s)) designated representatives will use their signatures along with their PIDs. The first initial and last name, or the complete first and last name can be used as the designated representative’s signature.

(4) A PID file will be maintained in the unit QC office or by the ULLS-A or LAS administrator. The PID file for units using the manual method of recordkeeping will list the name, PID, and signature of all personnel performing aircraft maintenance and the commander’s designated representatives. The PID file for units using the ULLS-A or LAS exists within the ULLS-A and LAS program. The information will remain on file a minimum of 6 months after the individual leaves the unit.

(5) Using abbreviations and acronyms can save time and effort. Use only the abbreviations in the glossary of this pamphlet and AR 310–50. Use only acronyms in aircraft and aviation-associated equipment technical manuals (TMs).

(6) The terms noun, noun abbreviation, noun nomenclature, and name refer to the same basic identification of a repair part, component, module, or end item in this pamphlet.

(7) Aircraft serial numbers will be recorded without a hyphen or dash between the procurement fiscal year (FY) and the designated number. Aircraft serial numbers will contain only seven numerical characters. In case the serial number contains less than seven numerical characters, add a zero “0” or zeros following the first two characters (FY procurement) of the serial number. For example, serial number 84–23456 will be recorded as 8423456; 85–6789 will be recorded as 8506789; or 90–123 will become 9000123. The entry made on aircraft forms in this format is needed to fit the automation system format. Serial numbers for aircraft training devices, simulators, repair parts, components, modules, systems, and subsystems will be recorded as listed on the aviation equipment data plate.

(8) Use the figures and illustrations as examples only. Read the policy in the text and the instructions for the specific figure. Then fill out the forms showing your own aviation equipment, unit, and status. To assist you in filling in the status, fault, and correcting information on the forms covered by this pamphlet, see definition of status symbols and action codes contained on DA Form 2408 (Equipment Log Assembly) in figure 2–2. If there is a conflict between your form and the example in the figure, use the policy and instructions for clarification.

(9) Forms may be overprinted when information is repeated. For example, heading information or inspection items when the form is used for a particular purpose more than once.

(10) Forms will not be changed or altered. You will not use locally devised manual or computer-generated forms or records as substitutes for the forms and records in this pamphlet. When the forms do not give you needed information, you can ask for written permission to vary this pamphlet from HQDA, DALO-SVM, WASH DC 20310–0505 or from U.S. Army Aviation and Missile Command (AMCOM), ATTN: AMSAM-MMC-RE-FF, Redstone Arsenal, Huntsville, AL 35898–5230.

(11) Commanders and persons in equal management positions of Department of Defense (DOD) contract support maintenance activities may appoint a designated representative to sign for and represent them in their absence for entries on forms and records. When a designated representative is appointed the authority must be in writing; such as, on a memorandum (letter), orders, or a DA Form 1687 (Notice of Delegation of Authority-Receipt for Supplies) (see DA Pamphlet 710–2–1).

(12) When entering calendar dates and clock times use the following guidelines:

(a) Calendar date format, for most of the forms and records in this pamphlet, contains seven alpha and numerical characters plus two spaces in the order of day, month, year (dd mmm yy). For example, 3 Oct 91 will be recorded as 03 Oct 91. Use Julian or ordinal date on DA Forms 2407 (Maintenance Request)/2407–1 (Maintenance Request Continuation Sheet) and 2410 (Component Removal and Repair/Overhaul Record) per specific instructions on each form.

(b) Clock time format will be entered using the 24-hour clock. For example, 4 minutes after 9 o’clock in the morning will be entered as 0904, or 10 minutes after 1 o’clock in the afternoon will be entered as 1310.

(13) When entering hours on DA Forms 2408–16 (Aircraft Component Historical Record) and 2410 round the hours up or down to the nearest whole number. For example, 1375.4 hours would be rounded down to 1375 hours and 1375.5 would be rounded up to 1376 hours.

(14) Do not start a new form or record until you have an entry for them. For example, if there are no deferred faults do not start a DA Form 2408–14–1. When the first fault is deferred, start the form.

(15) Disposition instructions are provided for each form and record. Forms and records may be kept beyond the time called for in this pamphlet to assist maintenance managers locally or for special situations. A completed form will not be kept beyond the time listed in this pamphlet merely for inspection or audit purposes.

(16) Forms and records must be readable, correct, and complete. If a form is found to have missing or incorrect information, correct the form per specific instructions in this pamphlet.

(17) Appendix D contains aircraft, aviation-associated equipment, and other equipment managed by AMCOM that require logbook, operational, maintenance, and historical forms and records filled out, maintained, processed, and disposed of. Some of the data from the forms are needed at the U.S. Army Logistics Support Activity (LOGSA), Huntsville, AL, the National Maintenance Point (NMP) at AMCOM, Redstone Arsenal, AL, and other AMCOM elements. The forms and records will be processed per instructions in this pamphlet.

(18) When instructions refer to a specific form or record, the instructions also apply to the ULLS-A or LAS computer generated form or record unless specifically stated.

b. When there is a conflict between related publications and this pamphlet about needed entry on aircraft and aviation-associated equipment forms and records, the procedures, and instructions contained in this pamphlet will govern. Related publications, such as, TBs, TMs, SOF messages, ASAMS, SOU messages, supply bulletins, or letters and MWOs will be developed and issued with references made to this pamphlet on how, when, and where entries will be made on forms and records. If you discover a conflict between related publications and this pamphlet, prepare a DA Form 2028 on the related publication and send it to AMCOM, ATTN: AMSAM-MMC-RE-FF so corrective action can be taken.

c. If an error is discovered after a form has already been sent to AMCOM, prepare a corrected copy of the form. Print “CORRECTED COPY” in the top margin of the form and if the form has a control number on it cross out the control number and enter the control number of the original form. Send corrected copies of deficiency reports and DA Form 2410 to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898–5320. Distribution of the corrected form is the same as the original form. Corrected copies of DA Form 2410 will be initiated per subparagraph 3–13c(2).
d. Whenever you prepare an EIR, check AR 672–20. Many EIRs qualify as suggestions and could earn you some money.

e. This pamphlet gives procedures for filling out forms and records manually and electronically (ULLS-A/LAS). Some DA standard automated data processing equipment or systems (ADPE-Supported) also call for maintenance forms to be filled out electronically. The instructions for filling out the forms under those systems are in the functional user’s manual. When the automated system you’re under disagrees with this pamphlet, use the procedures in the automated system manual. Prepare and submit a DA Form 2028 on the automated manual and this pamphlet, and send it to the agencies that wrote each manual so corrective action could be taken. The agency that wrote the user’s manual is listed in the SUGGESTED IMPROVEMENTS statement in the heading of each manual, normally the first page. Use the automated system only when—

1. The unit or activity (military or DOD contract support) that makes out the forms and records has the approval to use the DA standard automated system.

2. The aviation equipment forms and records for the automated system meets the needs of this pamphlet.

3. Reports to be sent to the NMP fit the needs of this pamphlet.

4. Automation of aircraft and aviation-associated equipment forms and records are not generally permitted. Only aviation field units or activities that have authority to use ULLS-A or LAS and DOD contractors providing aircraft and new, overhauled, or rebuilt reportable components and modules are entitled to automate specific forms and records. All other aviation units or activities, including DOD contract support maintenance will use hard copy DA forms and records as prescribed in this pamphlet. Do not vary from these rules without written permission from HQDA, DAGO-SVM, WASHINGTON, DC 20310–0505 or HQ AMCOM, ATTN: AMSAM-MMC-RE-FF.

g. Maintenance activities working under the Standard Army Management Information System (STAMIS) called Standard Army Maintenance System (SAMS) will use procedures listed in ADSM 18-L21-AHN-BUR-UM (End User Manual for Standard Army Maintenance System (SAMS-1)) and chapter 3 of this pamphlet. Aviation field units requesting maintenance by an activity operating under SAMS will use the procedures outlined in chapter 3.

h. Make sure you enter all maintenance actions resulting from deficiencies, faults, failures, problems in design, operation, maintenance, manufacture, overhaul and rebuild, and recommendations for improvement of aircraft and aviation associated equipment on the form or record that applies.

i. Metric figures will be converted to English units of measure before the forms and records are filled out. Only English units of measure will be entered on forms and records (see table 1–19).

j. Maintenance work hours, sometimes called “wrench-turning time” or “hands-on-time,” is the time it takes to complete a maintenance inspection, task, action, or technical inspection. This time includes the time needed to fill out forms and records by maintenance and QC personnel. These hours will be recorded in the “Man-hour” block on several maintenance forms. Manhours will be recorded in whole and tenths of an hour (see table 1–12 at the end of this chapter).

k. AMCOM, AMSAM-MMC-RE-FD, will hold copies of all forms and records for excess or deteriorated aircraft and aircraft transferred to other Government agencies, military assistance program, museums, and static display for 6 months, then destroy. The original forms and records received at AMCOM for other than crash damaged aircraft will be held for 2 years, then destroyed. All forms and records for crash-damaged aircraft will be held at AMCOM for 2 years. At the end of the 2 years holding period at AMCOM, the forms and records will be sent to the Director, Washington National Records Centers (WNRC), General Services Administration, Washington, DC 20404 and held per AR 25–400–2. Information from forms and records will be used by AMCOM for maintenance performance analysis of aircraft, systems, subsystems, components, modules, other repair parts and for Freedom of Information Act (FOIA) purposes. Information on these forms and records is available upon request. For personnel outside the Federal Government, the information may be obtained through FOIA. A cost may be involved for this service. Send request to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-CIC-OD-IS-RM, Redstone Arsenal, Huntsville, AL 35898–5320. ULLS-A disks will be treated the same as hard copy forms and records.

1. Responsibilities of forms

a. The forms and records called for in this pamphlet are more than just a collection of paper and data. They provide technical inspectors, maintenance managers, and commanders a maintenance management tool, as well as a picture of the condition, use, operation, maintenance status, and logistic needs of the aircraft and aviation equipment involved. The final purpose of this information is to be sure of safe and reliable aviation equipment that is fully mission capable (FMC) and ready for worldwide deployment.

b. Aircrew members, mechanics, technical inspectors, maintenance managers, record clerks, supervisors, and commanders at all levels of maintenance, including DOD contract support activities have an equal stake in maintaining forms and records and ensuring quality maintenance. It is the responsibility of the mechanics, maintenance managers, technical inspectors, and DOD contract support activities to use TMs for maintenance procedures and to ensure a safe, quality product in the end. TMs are designed to provide step-by-step guidelines in performing maintenance tasks. There is no requirement when recording related maintenance actions on forms and records to rewrite the TMs. Assemblies that are readily visible, such as a battery, may be TMed with one entry on the DA Form 2408–13–1 (Aircraft Inspection and Maintenance Record) or 2408–13–3 (Aircraft Technical Inspection Worksheet). For example, record in the fault/remark block “Battery removed.” and in the corrective action block “Removed/replaced battery IAW TM (applicable TM).” Components and safeties that are not readily visible require a separate entry and inspection before being completely assembled and covered up. Components that must be torque, require entries. Commanders or their designated representatives may request more extensive documentation if they believe that the experience level of maintenance or inspection personnel is not well established.

c. The forms and records will not be redone just for neatness, as the time it takes to redo forms and records is very costly and time consuming. Redo forms and records only when the original form is lost, damaged, or the information is almost unreadable.

1. When aircraft, aviation associated equipment, or components are repaired, overhauled, or rebuilt, historical forms will not be redone. Current forms will be updated and new ones added when needed.

2. When a form is redone, reenter all current information from the old form to the new one. If the form has a signature/PID block and the person that originally signed the form is not available (PCS, ETS, deceased) the person redoing the form will enter PCW and his or her PID. In the Remarks block of the new form or in the top or bottom margin, print: “New Form Initiated” and the date (dd mmm yy). The commander or the designated representative will sign the entry. This statement applies only to forms that do not already prescribe replacement instructions.

3. When the information is not available to be entered in a specific block of the form an all out effort will be made to get the information. “UNK” and “N/A” will not be used on DA Forms 2408–16, 2408–16–1 (History Recorder, Component, Module Record), and 2410. If missing historical information is needed, use instructions in paragraph 1-14.

4. If a tracked reportable component or module arrives in the unit or activity without a DA Form 2410, historical records, or a materiel condition tag attached, use instructions in paragraph 1-14.

5. If you lose, damage, falsify, or destroy a current form or record intentionally or through negligence, you may be subject to disciplinary action.

b. The manufacturer of new aircraft, aircraft training devices or simulators, and reportable components or modules, is responsible for filling out all the applicable forms, records, and supply condition
tags/labels covered by this pamphlet. If for any reason the manufacturer does not fill out these documents, the first maintenance unit or activity receiving the new equipment will fill them out. When data or information is needed to fill out any of the documents, see paragraph 1-14.

e. Contract support maintenance activities that provide logistic support to non-type classified Army aircraft may, but are not required to, use forms and records in this pamphlet.

f. Forms and records for aircraft and aviation-associated equipment will be safeguarded. This will help prevent mistakes and incorrect entries. See subparagraph 1-16a for safeguarding of forms and records when aircraft are transferred from one property account to another.

g. Owning units or activities are urged to establish and adhere to a logbook control program. This program will keep aircraft logbooks that contain important forms and records from being misplaced or lost. Logbooks are filed in a maintenance, production control, quality control office, or are kept in the aircraft. To end some of the present day logbook problems and to agree with ULLS-A when it is fully fielded, the following is recommended:

1. Establish a logbook control program.
2. File aircraft logbooks in the flight platoon, unit or activity maintenance office when aircraft are not flying.
3. Place responsibility to maintain and file the logbook on the assigned crew chief or mechanic.
4. Place responsibility for carrying out the procedures of the logbook control program on the platoon leader, unit, or activity maintenance officer.

1–8. How to use status symbols

a. Status symbols are used on forms and records to show the seriousness of faults, failures, deficiencies, related maintenance actions, and known safety hazards imposed by nuclear, biologic, or chemical agents in the environment. They show the condition readiness for flight, operation, service, inspection, and maintenance of the aircraft, system, or associated equipment. There are eight status symbols used. Five status symbols show the condition of the aircraft, system, or associated equipment; they are: Red “X,” Circled Red “X,” Red horizontal dash “,” Red diagonal “/,” and last name initial. Three status symbols are used for contamination of the aircraft; they are: Circled Red “N,” Circled Red “B,” and Circled Red “C.”

(1) Red “X” status symbol. A Red “X” is the most serious status symbol. You put a Red “X” on the form or record that applies when there is a fault, deficiency, or condition that makes the aircraft, system, or associated equipment inoperative or unsafe to fly. No one will authorize or direct the aircraft to be flown when the aircraft status symbol is a Red “X” until maintenance actions have been taken, the maintenance forms have been reviewed for completeness and accuracy, and the Red “X” is cleared. The following policy also applies:

(a) Operation of the aircraft engines, components, and systems on the ground is allowed for troubleshooting and maintenance purposes when the status symbol is a Red “X” and the Red “X” condition does not affect the components or systems being operated. An example would be to operate the engine, flight controls, fuel system, and so forth, or when the phase or scheduled maintenance inspection was due completion. In any case, caution must be exercised to be sure of safety for personnel, equipment, and facilities.

(b) A fault in a system (such as the TOW missile system) will be assigned a Red “X” status when the system is inoperative or unsafe for use. The aircraft may be flown with a system Red “X” if the fault will not affect the aircraft operation with the system disabled. If the fault affects aircraft operation with the system disabled, the aircraft will be assigned a Red “X” status.

c) When a Red “X” status condition is discovered and the same condition could occur in other aircraft, the Commander or designated representative will immediately inspect other aircraft of the same Mission, Design, Series (MDS) for the unsafe condition. Other aircraft found with the unsafe condition will be placed on a Red “X” status symbol. Prepare and send a Category I Deficiency Report on the unsafe condition when it meets the rules in paragraph 3-7.

d) See paragraph 1-10 for evacuation of an aircraft on a Red “X” status symbol and paragraph 1-11 for maintenance test flight verification of aircraft on a Red “X” status symbol.

e) Refer to table 1-1 for examples of other Red “X” conditions.

(2) Circled Red “X” status symbol. A Circled Red “X” means that the aircraft has a fault, deficiency, or condition allowing the aircraft to fly under specific limitations as specified or directed by higher authority, or as directed locally, until corrective action is taken. A Circled Red “X” status symbol applies to the following situations:

(a) When a condition is found that may be a hazard, but the aircraft may be flown with certain limitations; for example, no instrument flights due to a flight instrument being erratic, no flights above a specific altitude due to oxygen system inoperative, and so forth. If this condition could occur on other aircraft, the commander or designated representative will inspect those aircraft. Status symbols for affected aircraft will be changed as needed. The person finding the fault, deficiency, or condition will also prepare and send a Category I Deficiency Report per paragraph 3-7.

(b) When a SOF message, TB, MWO, airworthiness release message or other directive is received that permits an aircraft to be flown within the limits stated in the publication; for example, speed limitation of the aircraft, a restrictive inspection task that would limit the aircraft operating time, or a requirement for a maintenance action or follow-on special inspection to be done within a certain amount of flying hours, component operating hours, calendar time, or rounds fired.

(3) Red Horizontal Dash “-” Status Symbol. A Red horizontal dash “-” symbol shows that the condition of aviation equipment is unknown. It means that a possible dangerous condition may exist and will be corrected as soon as possible. A Red horizontal dash “-” symbol applies to the following situations:

(a) When a scheduled maintenance inspection, special inspection, component or module replacement, a maintenance operational check (MOC) is needed, a routine MWO is overdue application, a routine TB or a maintenance mandatory or operational ASAM is received, or a maintenance test flight (MTF) is needed.

(b) When maintenance actions listed above are due or started early.

(4) Red Diagonal “/” Status Symbol. The Red diagonal status symbol “/” shows that a fault or deficiency exists in material installed on aviation equipment. It also shows that an unsatisfactory condition exists on aircraft or aviation associated equipment that is not urgent or dangerous enough to ground the aircraft or stop the use of the associated equipment. The Red diagonal “/” will be used in the following ways:

(a) To describe the condition of the aircraft or aviation associated equipment on the forms that apply. Do this even if the fault or deficiency is corrected immediately. The entries are needed to make sure there is a complete maintenance history of all work done or needed.

(b) To prevent confusion the Red diagonal “/” will be entered on the form which applies by drawing a red line from the lower left corner to the upper right corner of the aircraft condition status symbol block.

(5) Last Name Initial Status Symbol. A last name initial (blue or black ink) symbol in the aircraft or aviation associated equipment condition status symbol block shows that a satisfactory condition exists as determined by the individual whose last name initial is entered in the status symbol block. This symbol will remain in the status symbol block until a fault, deficiency, or other unsatisfactory condition is found and recorded on the form that applies.

(6) Circled Red “N,” Circled Red “B,” and Circled Red “C” Status Symbols. A circled Red “N,” circled Red “B,” and circled Red “C” means that the aircraft was flown, operated, or stored in a nuclear, biological, or chemical contaminated environment and may be hazardous to personnel. Aircraft that are contaminated must be decontaminated and any related maintenance work done per appendix B.
b. Condition status symbols used in this pamphlet serve two purposes:

(1) To show the condition and status of the aircraft, systems, and aviation associated equipment aboard the aircraft.

(2) To establish a standard way of identifying the seriousness of faults and conditions of aircraft, systems, and aviation associated equipment.

c. A status symbol once entered on any aircraft form or record will never be erased, even if it is entered in error. The restriction on erasing status symbols is needed to be sure that the opinion of the person who made the entry is completely evaluated before a symbol is changed, and that erroneous symbol entries are properly cleared. This way there is no doubt about the integrity and validity of the status symbol entered. Status symbol entries to be used and methods of clearing or changing these symbols are listed below; likewise, once a status symbol is initialized, the initial will not be erased. More specific uses of status symbols are contained in the instructions for filling out the various aircraft forms and records in chapters 2 through 5. A status symbol in a condition status block shows the person’s opinion as to the seriousness of the fault, deficiency, or condition. No one may direct a person to change this symbol. Status symbols entered or initialized in error will be corrected as follows:

(1) When a red dash “-” or red diagonal “/” symbol is entered in error on the DA Form 2408–13–1, or other maintenance forms, the person who made the entry or initialized the status in error will enter the following statement in the Correcting Information block, “Status symbol entered in error, see entry below” or “Status symbol in error, reentered below” and his or her PID in the PID block. Have a designated representative (usually a technical inspector) verify the incorrect status symbol or the incorrectly initialized status symbol by entering “Insp OK”, his or her signature and technical inspector personnel identifier (TIPID) in the Correcting Information block. The designated representative will then enter his or her last name initial over the status symbol in the Fault Information block, then reenter the fault or deficiency and proper status symbol in the next open Fault Information block on the form.

(2) When a Red “X” or Circled Red “X” is entered or initialized in error on the DA Form 2408–13–1, or other maintenance forms, the person who made the entry will enter the following statement in the Correcting Information block, “Status symbol entered in error, see entry below” or “Status symbol initialized in error, reentered below” and his or her PID in the PID block. If an inspector’s stamp is used, the stamp will be no larger than 1/2 inch in diameter. A status symbol once entered on any aircraft form or record will never be erased, even if it is entered in error. The restriction on erasing status symbols is needed to be sure that the opinion of the person who made the entry is completely evaluated before a symbol is changed, and that erroneous symbol entries are properly cleared.

(3) If an error is found in the SYSTEM STATUS blocks on the DA Form 2408–13 (Aircraft Status Information Record), the person finding the error will explain the error in the next open Fault Information block of the DA Form 2408–13–1. The explanation will include the aircraft or mission related equipment status symbol, the block that is in error, and the PID, of the person correcting the error, in the Fault Information PID block. For example, Red dash “-” Symbol in ACFT top block 2 entered in error. In the Correcting Information block enter a statement showing corrective action, and PID in the PID block. For example, “Status adjusted.” A status symbol is not needed in the Fault Information block for these entries. Enter the correct status symbol in the next open SYSTEM STATUS block on the DA Form 2408–13, if it applies.

(4) When a status symbol is entered or initialized in error on DA Form 2408–13–2 (Related Maintenance Actions Record), block 8, make an entry in block 10 stating that the status symbol was entered or initialized in error and enter your PID in block 11. Reenter the related maintenance action with the correct status on the next open line of the form. If the status symbol in block 1 is initialized in error, make an entry in block 9 stating that the status was initialized in error. This entry will not require a status symbol in block 8 or an action entry in block 10.

(5) Any maintenance or quality assurance personnel within the Aviation Unit Maintenance (AVUM), Aviation Intermediate Maintenance (AVIM), or Depot Maintenance activities who believes that the fault, deficiency, or condition is more serious than depicted, may change the symbol to a more serious status symbol. They will enter “Status symbol changed to (enter status symbol) see entry below” and their PID in the Correcting Information block. Then enter their last name initial over the status symbol in the Fault Information block. On the next open Fault Information block enter the new status symbol and reenter the fault or deficiency. The person changing the symbol will place his or her PID in the Fault Information PID block to take responsibility for the status symbol change and entry.

(6) If the commander or person in an equal position in DOD contract support maintenance activities considers the condition of the aircraft or aviation associated equipment less serious than indicated by the status symbol, they can change the symbol. Changing the status symbol to a less serious symbol will not be delegated. In the Correcting Information block, enter “Status symbol changed to (enter status symbol) see entry below,” sign your name and enter your PID in the PID and TIPID blocks. On the next open Fault Information block enter the status symbol in the Status block and reenter the fault or deficiency, sign your name and enter your PID in the PID block. Update the SYSTEM STATUS block on DA Form 2408–13.

Note. These procedures also apply to DA Form 2408–13–3.

1–9. Clearing status symbols

a. When a Red “X” or Circled Red “X” condition is corrected a qualified designated representative (normally a technical inspector) appointed by the commander, activity supervisor, or an equal management or supervisory personnel in a DOD contract support maintenance activity must inspect the completed action.

(1) The mechanic making the corrective action will fill out the Correcting Information blocks, including the PID block of the DA Form 2408–13–1.

(2) The corrective action taken will be inspected. If the action taken is found to be satisfactory, the inspector will enter a statement “Insp OK” and their signature in the Correcting Information block of the DA Form 2408–13–1. An inspector’s stamp may be used instead of the statement “Insp OK” and signature. The inspector will also enter his or her PID in the TIPID block.

Note. If an inspector’s stamp is used, the stamp will be no larger than 1/2 inch in diameter.

(3) The inspector of the corrective action will place his or her last name initial over the status symbol in the Fault Information block. The fault or deficiency with the proper status symbol will be reentered in the next open Fault Information block.

(4) If an error is found in the SYSTEM STATUS blocks on the DA Form 2408–13 (Aircraft Status Information Record), the person finding the error will explain the error in the next open Fault Information block of the DA Form 2408–13–1. The explanation will include the aircraft or mission related equipment status symbol, the block that is in error, and the PID, of the person correcting the error, in the Fault Information PID block. For example, Red dash “-” Symbol in ACFT top block 2 entered in error. In the Correcting Information block enter a statement showing corrective action, and PID in the PID block. For example, “Status adjusted.” A status symbol is not needed in the Fault Information block for these entries. Enter the correct status symbol in the next open SYSTEM STATUS block on the DA Form 2408–13, if it applies.

(5) When a designated representative or authorized technical inspector does any part of the corrective action work to clear a Red “X” or Circled Red “X,” a different designated representative or technical inspector will have to inspect and sign off the corrective action. The inspector will enter his or her PID in the TIPID block.

Note. These procedures also apply to DA Forms 2408–13–2 and 2408–13–3.

c. There are SOF messages, ASAMs, TBS, MWOs, and other one-time inspection messages that call for a visual inspection of the aircraft or aviation associated equipment. When this type of inspection is completed and no maintenance work is needed, any designated representative can inspect and sign the inspection off. Inspector entries on the DA Form 2408–13–1 will be done per subparagraph 1–9a(2) and (3) above.

d. There may be occasions when clearing condition status symbols on DA Forms 2408–13–1, 2408–13–2, or 2408–13–3, where the action taken does not correct the fault entirely or to your satisfaction. Normally, you find this out when you inspect the corrective action or during the performance of a MOC. If the MOC shows the action taken did not correct the fault, no entries are made in the Correcting Information block after the “MOC Required” entry. If you found a fault preventing you from doing the MOC, the fault discovered will be entered in the next open Fault Information block.
with the proper status symbol in the Status block. When the fault is corrected and it needs a MOC per TM 1–1500–328–23, go ahead and perform it on the same line or block or in the next open block. After the fault that prevented you from performing the MOC for the original fault is cleared, go back and complete the MOC and record it per paragraph 2-10.

b. If a fault or deficiency assigned a Red “X” status symbol is found to be within the limitations, by test measurement and diagnostic equipment (TMDE), of the TM, TB, MWO, SOF, and ASAM that applies, the fault can be inspected by any designated representative and signed off. For example, a Red “X” for the M/R red pitch change link upper bearing worn excessively. A designated representative checks and evaluates the bearing for serviceability by using a dial indicator, and finds the bearing within the allowable tolerance of the TM that applies. The designated representative can clear the entry by entering in the Correcting Information block “Checked with dial indicator, per TM 55–1520–210–23 Insp OK,” signing his or her name, entering his or her PID in the PID block, and last name initial over the Red “X” symbol for a one-time evacuation mission of an aircraft, there is no need for the entry to be inspected by a qualified designated representative; however, the PID of a technical inspector must be entered in the PID block for units using the ULLS-A or LAS Program. Clearing the Circled Red “X” status symbol for a one-time evacuation mission is covered in the following paragraph.

c. Since no maintenance action is needed to clear a Circled Red “X” status symbol for a one-time evacuation mission of an aircraft, there is no need for the entry to be inspected by a qualified designated representative; however, the PID of a technical inspector must be entered in the PID block for units using the ULLS-A or LAS Program. Clearing the Circled Red “X” status symbol for a one-time evacuation mission is covered in the following paragraph.

1–10. Evacuation of aircraft on a Red “X” status symbol

a. If it is deemed possible, with an acceptable degree of risk, to evacuate an aircraft while the condition status is a Red “X,” the commander, or an equal management or supervisory person in a DOD contract maintenance support activity or their designated representative (usually a maintenance officer) may authorize a one-time evacuation mission as follows:

Note. One-time evacuation mission (recovery mission) is intended to allow the commander the flexibility, during deployment in austere conditions, to authorize more than one fuel stop to return the aircraft to the first available maintenance facility. The commander is responsible for risk assessment of each leg of the mission. The recovery mission terminology is not intended to allow return of a Red “X” aircraft to home station unless it is the first available maintenance facility.

(1) Enter this statement in the Correcting Information block of the DA Form 2408–13–1, “Status symbol downgraded to a Circled Red ‘X,’” see entry below.” The person making this entry will enter his or her signature after the statement, PID in the PID block that applies (PID or TIPID block), and last name initial over the Red “X” in the Fault Information block.

(a) Enter a Circled Red “X” in the next Fault Information status block and change the SYSTEM STATUS symbol block on the DA Form 2408–13.

(b) Enter this statement in the Circled Red “X” Fault Information block: “Aircraft cleared for a one-time evacuation mission from to” sign your name following the entry and complete all portions of the Fault Information block that apply to include the PID block.

(2) After completion of the one-time evacuation mission the pilot, authorized by the commander or designated representative to perform the one-time evacuation mission, will enter in the Correcting Information block: “One-time evacuation mission completed, status symbol upgraded to a Red “X,” see entry below.”

(a) The pilot will enter his or her PID in the Correcting Information PID block. A technical inspector’s PID must be entered in the PID block for units using the ULLS-A or LAS program.

(b) The pilot will enter his or her last name initial over the Circled Red “X” status symbol in the Fault Information block.

(c) The pilot will enter a Red “X” status symbol in the SYSTEM STATUS block on the next open box on the DA Form 2408–13 and the Status box in the Fault Information block of DA Form 2408–13–1. Reenter the original fault and the pilot’s PID in the Fault Information PID block.

1–11. Maintenance test flight verification of aircraft on a Red “X” status symbol

a. When an in-flight deficiency, with a Red “X” status, does not recur during ground tests and a maintenance test flight, for verification, is deemed possible, with an acceptable degree of risk, the commander or an equal management supervisory person in a DOD contract maintenance support activity or designated representative may authorize the following actions:

(1) Enter in the Correcting Information block, “Status symbol changed to a Red ‘-‘,” see entry below.” The person making this entry will enter his or her signature after the statement, TIPID in the PID and TIPID block, and last name initial over the Red “X” in the Status box in the Fault Information block of the DA Form 2408–13–1.

(2) Enter in the next open Fault Information block, “Aircraft cleared for a maintenance test flight to verify (reason for test flight),” sign your name following the entry, and complete all portions of the Fault Information block that apply, to include PID.

(3) Enter a Red “-“ in the Status box of the Fault Information block of the DA Form 2408–13–1 and in the SYSTEM STATUS symbol block on the DA Form 2408–13–1.

b. If the condition does not recur during the test flight, the maintenance test pilot will—

(1) Enter in the Correcting Information block, “Could not duplicate, test flight completed—aircraft released for flight,” complete all portions of the Correcting Information blocks that apply, to include PID.

(2) Put his or her last name initial over the status symbol in the Status box in the Fault Information block.

c. If the test flight confirms that the in-flight fault or deficiency exists, the test pilot will enter in the Correcting Information block “Test Flight Completed see entry below” and complete all portions of the Correcting Information block that apply, to include PID. In the next Fault Information block reenter the fault or deficiency, the proper status symbol, all information needed in the Fault Information block, to include PID, and any other information noted during the test flight.

a. SOF messages, ASAMs, and MIMs are developed, prepared, and electrically sent by AMCOM to all users of Army aircraft. SOF messages and ASAMs that apply are followed up with an official printed TB. Chapter 5 of AR 95–3 covers the preparation procedures for issue, compliance, and the overall management of SOF messages, ASAMs, and TBs. ASAMs are of a lower priority than SOF messages. MIMs are a lower priority than ASAMs. MIMs are informational messages that apply to aviation maintenance personnel. Normally, MIMs do not require any entries on forms and records.

(1) Not all SOF messages call for maintenance actions, such as operational messages that apply to flight procedures, operating limits, or operational policy. Each SOF message and TB normally give detailed instructions on the condition status symbol to use, forms to be filled out, and how to report the receipt and application of the SOF message and TB. When a SOF message or TB is issued without instructions for forms and records entries or when a conflict arises between the instructions for forms and records in the SOF message and this pamphlet, the instructions and procedures in this pamphlet will be followed.

(2) A SOF Emergency message grounds affected aircraft and calls for changing the status symbol to a Red “X.”

(3) A SOF Operational message may ground affected aircraft for operational reasons to correct unsafe conditions pertaining to aircraft or aviation associated equipment operation.

(4) A SOF Technical message may be issued to cause grounding of affected aircraft, but allow them to fly with specific limitations
and for a certain amount of calendar time, flying hours, component operating hours, or rounds fired. Normally, the status symbol will be changed to a Circled Red “X.”

(5) A Maintenance Mandatory ASAM directs maintenance actions, updates technical manuals, and may call for compliance reporting. Normally, the aircraft condition status symbol will be changed to a red horizontal dash “-”.

(6) An Informational ASAM will provide status and information of a maintenance, technical, or general nature.

(7) An Operational ASAM pertains to aircraft operations, flight procedures, limitations, or operational policy.

b. All SOF messages, ASAMs, and TBs will be recorded on DA Form 2408–13–1, except for informational ASAMs. Paragraph 5 of each message will be used to show the end item aircraft or flight simulator by MDS that needs to be inspected. For example, paragraph 5 calls for all UH-1M series helicopters to be inspected. This message will be recorded for UH-1M series aircraft only, and will not be recorded on UH-1H or other series aircraft.

Note. Informational ASAMs do not need to be entered on any form or record.

(1) Record SOF messages, ASAMs, or TBs on the DA Form 2408–13–1 upon receipt, and then complete actions called for.

(a) After the SOF message, ASAM, or TB that calls for an inspection on aircraft, flight simulators, and their repair parts, systems, subsystems, and so forth, is applied enter on the DA Form 2408–15 (Historical Record for Aircraft). (See fig 4-3 for an example of entries).

(b) SOF messages, ASAMs, and TBs that call for an inspection on reportable items (components and modules) listed in TB 1–1500–341–01, will be recorded on the DA Form 2408–5–1 (Equipment Modification Record (Component)) when applied. (See fig 4-2 for an example of entries).

Note. SOF messages, ASAMs, and TBs that apply to reportable items will not be recorded on DA Forms 2408–5–5 (Equipment Modification Record) or 2408–15. They will be recorded on DA Form 2408–5–1.

(2) SOF messages or ASAMs that call for recurring inspection(s) will be entered on the DA Form 2408–18 (Equipment Inspection List). Enter the needed inspection(s), reference (SOF or ASAM message number), frequency of the inspection, and when the inspection is due next.

(3) SOF messages, ASAMs, or TBs that affect reportable components and modules in supply stock or are uninstalled in maintenance activities, enter the SOF or ASAM message number, short or abbreviated title of message, and phrase “Not complied with” on the materiel condition tag or label attached to the component, module, or carton containing the component. When the SOF message or ASAM is applied, enter the information on a DA Form 2408–5–1 for the component or module and attach or enclose the form with the component or module.

(4) When a SOF message or ASAM calls for a reportable component, or module to be changed, the related DA Forms 2410, and 2408–16 or 2408–16–1 will be filled out.

(5) If a SOF message, ASAM, or TB applies to a reportable component or module that does not have a serial number, obtain a serial number from the Serial Number Reporting Requirement (SNRR) office AMCOM, ATTN: AMSAM-MMC-RE-FD, Huntsville, AL, via e-mail, cfo@redstone.army.mil, or Defense Switched Network (DSN) 897–2900, commercial (256) 313–2900.

(6) When the SOF message, ASAM, or TB calls for changes in significant historical data, such as, national stock number (NSN), part number (PN), and so forth, see instructions for the specific maintenance and historical forms or records in chapters 3 and 4.

(c) Aircraft serial number (in numerical sequence if more than one aircraft).

(d) Any other data called for in the SOF message.

(2) Send the report as directed by the Major Army Command (MACOM) or to Commander, AMCOM, ATTN: AMSAM-SF-A, Redstone Arsenal, Huntsville, AL 35898–5320, by the suspense date in the reporting section of the SOF or ASAM. Reporting compliance by e-mail, safeadm@redstone.army.mil is advised, however, if you can data fax to DSN 788–8643 or commercial (256) 842–8643.

(3) Do not report compliance of a TB when a report has already been made on the SOF message or ASAM containing the same subject matter. The TB will be complied with and reported per the TB instructions only when it has different maintenance actions than called for in the previous SOF message or ASAM.

(d) Every effort will be made by maintenance personnel at each level of maintenance (AVUM, AVIM, and Depot) to apply, record, and report the application of each SOF message, ASAM, or TB. When the application is not entered on the DA Form 2408–13–1 or historical records it is presumed that the SOF message, ASAM, or TB was not applied. If the SOF message, ASAM, or TB is not recorded as having been applied on the DA Form 2408–13–1 or historical records, and the TB publication effective date has been reached or passed, you should apply, record, and report the SOF message, ASAM, or TB per the above procedure.

1–13. Safety-Of-Use Messages, Urgent MWOs, and TBs

a. SOU messages are developed, prepared, and electronically sent by AMCOM to all users of Army nonaircraft equipment listed in appendix D. AR 750–10 covers procedures for issue, compliance, and management of SOU messages, urgent MWOs, and TBs.

b. SOU messages are different from SOF messages and ASAMs, which are covered in paragraph 1-12. Another SOU message, urgent MWO, or TB may follow the first SOU message. This depends on the type of SOU message first sent. The following explains the different types of SOU messages for aviation associated equipment.

(1) Operational. This message changes operating procedures or places limits on equipment usage.

(2) Technical. This message deadlines aviation associated equipment, used in support of aircraft and other aviation associated equipment, because of materiel or maintenance deficiencies. This type of message calls for modification of the equipment or its components, modules or parts. It will be published later as an urgent MWO.

(3) One-Time Inspection. This type of message immediately deadlines equipment and directs inspection procedures before its next use. Equipment found to be deficient will remain deadlines until the deficiency is corrected. This type of message will not direct or prescribe a configuration change. SOU one-time inspection messages that are superseded by SOU technical messages will be published later as emergency TBs.

(4) Advisory or Technical Maintenance or Operational. This type of message contains new operational or technical maintenance information vital for equipment operators or maintenance activities. Advisory messages will not deadline equipment or direct accomplishment of a task or maintenance function.

c. Upon receipt of the SOU message, complete the action called for, then record the SOU message on DA Form 2408–5–1 for the affected item. Upon completion of maintenance actions called for by SOU messages or TBs for aviation night vision goggles (NVG), enter information on the DA Forms 2408–15 and 2408–30 (NVG Inspection and Maintenance Report) that apply to the aviation night vision goggles.

d. Report compliance per instructions in the SOU message, urgent MWO, or TB.

1–14. Missing historical records or information

a. When aircraft and aviation associated equipment listed in appendix D, or reportable components and modules listed in TB 1–1500–341–01 are received without maintenance and historical records do the following:
1-15c. Aircraft and aviation associated equipment files

content and management

a. The needed technical publications, forms, and records for aircraft and aviation associated equipment files are:

(1) Operator’s Checklist (CL).

(2) Operator’s Manual (TM 10) including changes and related SOF or TBs.

(3) Current DD Form 365–4 (Weight and Balance Clearance Form F-Transport/Tactical) (See AR 95–3, chapter 6).

(4) Equipment Logbook Assembly consisting of the items below:

(a) Logbook binder.

(b) Turbine Engine Health Indicator Test (HIT) Exhaust Gas Temperature (EGT) log, if applicable.

(c) Preventive Maintenance Daily (PMD) Checklist or Preventive Maintenance Service Manuals (Not required for aircraft not using Army TMs; such as C–11, C–12, C–21, C–23, C–26, TH–67 series aircraft).

(d) Aircraft logbook forms:

2. A Form 2408 (Equipment Log Assembly (Records)).

3. A Form 2408–4–1 (Weapon Record Data).

4. A Form 2408–4–2 (Weapon Sighting Data (OH-58D)).

5. A Form 2408–4–3 (Weapon Sighting Data (AH-64A only)).

6. A Form 2408–12 (Army Aviator’s Flight Record).

7. A Form 2408–13 (Aircraft Status Information Record).

8. A Form 2408–13–1 (Aircraft Inspection and Maintenance Record).

11. A Form 2408–14–1 (Uncorrected Fault Record (Aircraft)).

13. D Form 1896 (Jet Fuel Identaplate) (white) or DD Form 1897 (AVGAS Identaplate) (purple).

d. Even though all the proper forms in subparagraph 1-15c(4)(d) above are to be kept in the aircraft logbook, only four forms are considered the “Flight Pack.” The four forms are DA Forms 2408–13, 2408–13–1, 2408–13–2, and 2408–13–3. A unique page numbering system for the Flight Pack was developed for the pilot, crewmembers, and maintenance personnel using and making entries on aircraft logbook forms. Of the four forms in the Flight Pack only three of them are given page numbers; they are DA Forms 2408–13–1, 2408–13–2, and 2408–13–3. The DA Form 2408–13 in the Flight Pack does not have a page number. It does have a “Number of pages in the Flight Pack” entry, but this form will not be counted as a page in the Flight Pack. An example of the unique numbering system: An aircraft logbook contains one DA Form 2408–13, three DA Forms 2408–13–1, and one DA Form 2408–13–2. The first DA Form 2408–13–1 will be page 1, the second will be page 2, and the third will be page 3. The DA Form 2408–13–2 becomes page 4, which makes the number of pages in the Flight Pack four. The number 4 will then be entered in the “Number of pages in flight pack” block on the DA Form 2408–13. The numbering system provides the pilot, crew chief, and quality control inspectors with an accounting system of how many forms are in the flight pack. If a DA Form 2408–13–1 or 2408–13–2 was removed from the aircraft logbook by mistake it could be detected by the pilot or crew chief. When the missing form is placed back in
the flight pack, the pilot can complete their review of the aircraft status, condition, and other important entries before flight. If a DA Form 2408–13–3 is added to the aircraft logbook, it becomes a part of the flight pack and is numbered as a page in the flight pack. The historical forms and records listed below will not be kept in the aircraft. Maintenance personnel who do organizational, support maintenance, quality control functions on the aircraft, will retain them in the quality control office or other suitable location for easy access.

1. Maintenance historical forms and records:
 a. DA Form 2408–5 (Equipment Modification Record).
 b. DA Form 2408–5–1 (Equipment Modification Record (component)).
 c. DA Form 2408–15 (Historical Record for Aircraft).
 d. DA Form 2408–15–2 (Aircraft Vibration Record).
 e. DA Form 2408–16 (Aircraft Component Historical Record).
 f. DA Form 2408–16–1 (History Recorder, Component, Module Record).
 g. DA Form 2408–17 (Aircraft Inventory Record).
 h. DA Form 2408–19 (Aircraft Engine Turbine Wheel Historical Record).
 i. DA Form 2408–19–1 (T53/T55 Turbine Engine Analysis Check Record).
 j. DA Form 2408–19–2 (T700 Turbine Engine Analysis Check Record).
 k. DA Form 2408–19–3 (Engine Component Operating Hours Record).
 l. DA Form 2408–20 (Oil Analysis Log).
 m. Turbine Engine Health Indicator Test (HIT) or Exhaust Gas Temperature (EGT) worksheets which apply.

2. Aviation life support equipment (ALSE) forms and records:
 a. DA Form 2408–21 (Life Raft Inspection Record).
 b. DA Form 2408–22 (Helmet and Oxygen Masks/Connector Inspection Record).
 c. DA Form 2408–23 (Survival Radio/Emergency Location Transmitter Inspection Record).
 d. DA Form 2408–24 (Survival Kit Inspection and Maintenance Record).
 e. DA Form 2408–25 (Mesh Net Survival Vest Inspection Record).
 f. DA Form 2408–26 (Life Preserver Inspection Record).
 g. DA Form 2408–27 (Life Preserver Data).
 h. DA Form 2408–28 (Oxygen Console Service Record).
 i. DA Form 2408–29 (Anti-Exposure Coveralls Inspection Record).
 j. DA Form 2408–30 (NVG Inspection and Maintenance Record).

3. Completed forms and records will be processed and disposed of as per chapters 2, 3, 4, and 5.

4. Completed Maintenance Inspection Checklist for scheduled maintenance, such as a phase, or any other scheduled maintenance will be processed and disposed of per chapter 3.

f. The publications listed below will be maintained and kept up-to-date.
 a. MTF manual.
 b. AVUM and AVIM manuals (–10 and –23).
 c. AVUM and AVIM aircraft repair parts and special tools list (–23P).
 d. AVUM and AVIM aircraft engine maintenance manual (–23).
 e. AVUM and AVIM aircraft engine repair parts and special tools list (–23P).
 g. Organizational maintenance repair parts and special tools lists manual: Electronic Configuration (–20P or –23P).
 i. Maintenance repair parts and special tools list manual: Armament subsystem (–20P or –23P).

1–16. Records to accompany aircraft

a. U.S. Army aircraft listed in appendix D will have, on board, the publications and forms listed in subparagraph 1–15e at the time of property transfer from one account to another, or during deployment to field exercises or combat operations. Other forms, records, and publications listed in subparagraph 1–15e will be shipped separately to the unit or activity receiving, operating, or maintaining the aircraft within 24 hours of the aircraft’s departure from the transferring or deploying unit or activity. Do not load the items, in subparagraph 1–15e, aboard the aircraft, cargo aircraft, barge, ship or vehicle that is transporting the aircraft being transferred or deployed. Do not load items listed in subparagraph 1–15e in one container, such as a conex or footlocker. This will prevent loss or damage of valuable information on forms and records. The method of packaging and shipping of these items will be accomplished using air courier service, such as Airborne Express, United Parcel Service (UPS), Federal Express, or the quickest and safest way possible. The transferring or deploying unit or activity must be able to track the items if the shipment does not arrive at the receiving unit or activity.

b. ULLS-A units will download the records to magnetic media (diskette) to facilitate the uploading of aircraft records at the gaining organization if they have ULLS-A capabilities. The QC will review all operational/historical records to determine serviceability standards and make entries to records requiring notations of the transfer. The manual/hard copy aircraft logbook and historical records will be current and identical with the aircraft records downloaded to the diskette(s). The manual/hard copy records will be required if the gaining organization is not operating under ULLS-A.

c. All aircraft forms, records, and files will be sent to the gaining unit or activity when the aircraft is—
 1. Transferred to another unit or activity (includes the 6-month file).
 2. Delivered for repair, at the request of a higher-level maintenance activity.
 3. Delivered to a depot level, organic, or DOD contract support maintenance activity for repair, overhaul, modification, or modernization.

1–17. Excess, Deteriorated, Crash Damaged, or Destroyed U.S. Army Aircraft Transferred to Defense Reutilization and Marketing Office

a. Flyable or deteriorated aircraft designated as excess to the Army’s needs by AMCOM, and for sale or donation per DOD 4160.21M, will be transferred to the local Defense Reutilization and Marketing Office (DRMO). The aircraft data plate will remain attached to the aircraft, except for the aircraft listed in subparagraph (d) below. Nonflyable aircraft will have the data plate removed and a photocopy made of the data plate. The photocopy will remain with the aircraft and the data plate will be mailed to AMCOM. The complete logbook, including all forms, records, files, and publications, will be transferred with the aircraft. The activity transferring the aircraft to the DRMO will complete the following actions:
 1. Do a serial number inventory of all reportable components and subcomponents listed in TB 1–1500–341–01 or ULLS-A Component Legitimate Code File (LCF), and entered on DA Forms 2408–16 and 2408–16–1. Due to inaccessibility of some subcomponents, such as internal engine subcomponents, they cannot be inventoried. Compare the serial number inventory with the DA Forms 2408–16 and 2408–16–1 to be sure that the forms are current and accurate.
 2. Review current DA Form 2408–20 to make sure that all
information is current. Notify servicing AOAP laboratory that the aircraft and components are being transferred.

3. When AMCOM issues a “Save List” containing reportable components listed in TB 1–1500–341–01 or ULLS-A Component LCF, submit a DA Form 2410, copy 1, for removal of the item(s) and line out the item(s) on the DA Form 2408–16 or 2408–16–1. Aircraft data plate (has/has not been removed, include the reason for transfer)” followed by the PID, unit, and phone number of the individual making the entry. If the engines are equipped with History Recorders enter the history recorder serial numbers and readings for each engine, with engine serial number. ULLS-A users may mail a transfer disk in lieu of making copies. Annotate the software version on the disk label.

5. Make a close-out entry on the DA Form 2408–15 as follows: “Close-out Statement: All items on the DA Form 2408–16 have been verified as installed, or removed items have been lined out. Aircraft processed to DRMO at (location of DRMO) on (date) by (name of facility or unit transferring aircraft) at (total aircraft hours). Aircraft data plate (has/has not) been removed, (include the reason for transfer)” followed by the PID, unit, and phone number of the individual making the entry. If the engines are equipped with History Recorders enter the history recorder serial numbers and readings for each engine, with engine serial number. ULLS-A users may mail a transfer disk in lieu of making copies. Annotate the software version on the disk label.

1–18. Aircraft transferred to other Government agencies and the Military Assistance Program

a. US Army aircraft, flyable or nonflyable, may be transferred to other Government agencies or state and local agencies when designated by AMCOM. The aircraft data plate will remain attached to the aircraft. The complete logbook assembly, forms, records, files, publications, and data plate will be transferred with the aircraft, except the DA Forms 2408–12, on file in the operations office. The activity possessing the aircraft before transfer will complete the following actions:

1. Do a serial number inventory of all reportable components and subcomponents listed in TB 1–1500–341–01 or ULLS-A Component LCF, and entered on DA Forms 2408–16 and 2408–16–1 to be sure that the forms are current and accurate. Compare the serial number inventory with the DA Forms 2408–16 and 2408–16–1 to be sure that the forms are current and accurate. Some subcomponents can not be inventoried due to inaccessibility of the subcomponents, such as, internal engine subcomponents.

2. Notify servicing AOAP laboratory that the aircraft and components are being transferred.

3. When AMCOM issues a “Save List” containing reportable components listed in TB 1–1500–341–01 or ULLS-A Component LCF, submit a DA Form 2410, Copy 1, for removal of the item(s) and line out the item(s) on the DA Form 2408–16 or 2408–16–1. A copy of the “Save List” must be furnished to AMCOM with the aircraft records.

4. Remove the aircraft data plate and mail to AMCOM along with the forms and records or ULLS-A transfer disk. Annotate the ULLS-A software version on the disk label.

5. Make a close-out entry on the DA Form 2408–15 as follows: “Close-out Statement: All items on the DA Form 2408–16 have been verified as installed, or removed items have been lined out. Aircraft processed to DRMO at (location of DRMO) on (date) by (name of facility or unit transferring aircraft) at (total aircraft hours). Aircraft data plate (has/has not) been removed, (include the reason for transfer)” followed by the PID, unit, and phone number of the commander’s designated representative having jurisdiction over the aircraft at the time of disposal. If the engines are equipped with History Recorders enter the history recorder serial number and readings for each engine, with engine serial number.

6. Mail the following aircraft records and data plate to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (CDRA), Redstone Arsenal, Huntsville, AL 35898–5230:

1–19. Aircraft used for static display or transferred to museums

a. Aircraft transferred for use as a static display. The activity possessing the aircraft before transfer will complete the following actions:

(1) Do a serial number inventory of all reportable components and subcomponents listed in TB 1–1500–341–01 or ULLS-A Component LCF, and entered on DA Forms 2408–16 and 2408–16–1. Some subcomponents cannot be inventoried because of inaccessibility of the subcomponents, such as internal engine subcomponents. Compare the serial number inventory with the DA Forms 2408–16 and 2408–16–1 to be sure that the forms are current and accurate. The DA Forms 2408–16 and 2408–16–1 will be used by AMCOM to complete the DA Form 2410s, Copy 3 Loss to the Army Inventory, for all reportable components and subcomponents installed on the aircraft at the time of transfer.

(2) Review current DA Form 2408–20 to make sure that all information is current. Notify servicing OAAP laboratory that the aircraft and components are being transferred.

(3) When AMCOM issues a “Save List” containing reportable components listed in TB 1–1500–341–01 or ULLS-A Component LCF, submit a DA Form 2410, Copy 1, for removal of the item(s) and line out the item(s) on the DA Form 2408–16 or 2408–16–1. A copy of the “Save List” must be furnished to AMCOM with the aircraft records.

(4) Make a close-out entry on the DA Form 2408–15 as follows: “Close-out Statement: All items on the DA Form 2408–16 have been verified as installed or items removed have been lined out. Aircraft transferred to (location of receiving museum) on (date) for (reason for transfer) by (name of facility or unit transferring aircraft) at (total aircraft hours). Data Plate remained installed.” followed by the signature, unit, and phone number of the individual making the entry. If the engines are equipped with History Recorders enter the history recorder serial numbers and readings for each engine, with the engine serial number.

(5) Remove the data plate and make a photocopy of the data plate. The photocopy will remain with the aircraft. Mail the aircraft data plate and the following records or ULLS-A transfer disk (annotate ULLS-A software version on the disk label) to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (CDRA), Redstone Arsenal, Hunstville, AL 35898–5230:

(a) Current DA Form 2408–13.
(b) DA Form 2408–5.
(c) DA Form 2408–5–1.
(d) DA Form 2408–15.
(e) DA Form 2408–15–2.
(f) DA Form 2408–16.
(g) DA Form 2408–16–1.
(h) DA Form 2408–19.
(i) DA Form 2408–19–1.
(j) DA Form 2408–19–2.
(k) DA Form 2410.
(l) Destroy the forms listed below.
(a) DA Form 2408–13 (except the current form).
(b) DA Form 2408–13–1.
(c) DA Form 2408–13–2.
(d) DA Form 2408–14–1.
(e) DA Form 2408–17.
(f) DA Form 2408–18.
(g) DA Form 2408–20.
(h) Aircraft 6-month file.
(i) Aircraft Weight and Balance file.
(j) Aircraft Transferred to Museums

(b) Records of aircraft that will be used in museum displays may remain with the aircraft provided the aircraft has significant historical value, or the records will be used as part of the display. When the complete logbook assembly, forms, records, files and publications will be transferred with the aircraft perform the following:

(a) A serial number inventory of all reportable components and subcomponents listed in TB 1–1500–341–01 or ULLS-A Component LCF and entered on DA Forms 2408–16 and 2408–16–1. Some subcomponents cannot be inventoried because of inaccessibility, such as, internal engine subcomponents. Compare the serial number inventory with the DA Forms 2408–16 and 2408–16–1 to be sure that the forms are accurate and current.

(b) When AMCOM issues a “Save List” containing reportable components listed in TB 1–1500–341–01 or ULLS-A Component LCF, submit a DA Form 2410, Copy 1, for removal of the item(s) and line out the item(s) on the DA Form 2408–16 or 2408–16–1. A copy of the “Save List” must be furnished to AMCOM with the aircraft records.

(c) Make a close-out entry on the DA Form 2408–15 as follows: “Close-out Statement: All items on the DA Form 2408–16 have been verified as installed or items removed have been lined out. Aircraft transferred to (location of receiving museum) on (date) for (reason for transfer) by (name of facility or unit transferring aircraft) at (total aircraft hours). Data Plate remained installed.” followed by the signature, unit, and phone number of the individual making the entry. If the engines are equipped with History Recorders enter the history recorder serial numbers and readings for each engine, with the engine serial number.

(d) A readable photocopy of the current DA Form 2408–13, all DA Forms 2408–15, 2408–16 and 2408–16–1 in the historical file and the AMCOM “Save List” will be sent to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (CDRA), Redstone Arsenal, Hunstville, AL 35898–5230. The copies of these forms will be used by AMCOM to complete the DA Forms 2410, Copy 3 Loss to the Army Inventory, for all reportable components and subcomponents installed on the aircraft at the time of transfer. ULLS-A users may mail a transfer disk in lieu of making copies. Annotate the software version on the disk label.

(2) When the records are not to be transferred with the aircraft, follow the procedures in subparagraph 1–19a(5) and (6).

(c) The aircraft data plate will be removed and a photocopy of the data plate will be made. The photocopy of the data plate will remain with the aircraft and the data plate will be mailed to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (CDRA), Redstone Arsenal, Hunstville, AL 35898–5230.

1–20. Aircraft and components used for maintenance training

a. Aircraft designated as Category A or B maintenance training aircraft (MTA) will keep all forms and records required by paragraph 1–15 above. Send copies of the current DA Form 2408–13, last page of aircraft DA Form 2408–15, and all DA Forms 2408–16 and 2408–16–1.

b. When an aircraft is redesignated as a MTA the procedures in subparagraph 1–18a will be followed.

c. When aircraft components or modules are designated as structural training devices, dynamic training devices, or isolated aeronautical elements, to be used in a training environment, a DA Form 2410, Copy 3 Loss to the Army Inventory, must be submitted to AMCOM for each reportable item.

d. Section XIII of TM 1–1500–328–23 provides policy for training aircraft.

1–21. U.S. Army aircraft loaned or bailed, or procured for other U.S. Government departments and agencies

U.S. Army aircraft forms, records, files, and publications will go
with aircraft that are loaned or bailed to other U.S. Government departments or agencies, industrial, and research activities. Upkeep of forms, records, files, and publications for aircraft loaned or bailed will be completed by the activity operating, maintaining, storing, or disposing of the aircraft per this pamphlet.

1–22. Classifying records and reports
Data displaying on hand quantities of end-item aircraft, such as the DA Form 1352 (Army Aircraft Inventory, Status, and Flying Time) for any size unit or organization, such as, company, squadron, battalion, brigade, or division of the U.S. Army is unclassified. The on-hand information is unclassified whether it is shown by single aircraft, multiple aircraft, consolidated, rolled up, or otherwise arrayed. However, any record, report, or display that shows both on hand quantities and authorized quantities is to be classified at a minimum as confidential at corps level and above. Exceptions to the guidance apply where it is listed in aircraft or aviation associated equipment security classification guides. Protect confidential information per AR 380–5. Declassify 1 full year after the date of the report.

1–23. Unit Level Logistics System-Aviation and Logbook Automated System
a. An automated data processing (ADP) system to improve maintenance and logistics management throughout the Army aviation community has been developed, tested, approved, and is in the process of being fielded. The new and more complex aircraft weapon systems and aviation associated equipment combined with the streamlined fighting force, create a need for a more efficient record keeping system that will provide the commander and maintenance managers, at all levels, an improved management tool. The ADP system called LAS and developed by AMCOM, was fine-tuned and renamed Unit Level Logistics System–Aviation (ULLS–A), incorporated into the STAMIS ULLS, and is the standard system being fielded to all Army aviation field units. ULLS–A interfaces with SAMS and the STAMIS called Standard Army Retail Supply System (SARSS). Upon completion of any other automated related systems under development, such as, the flight data recorder fault analyzer and electronic aviation technical manuals, steps will be taken to interface with these systems.

b. Commanders are responsible for the secure operation of ULLS–A sites. This responsibility includes stored data, hardware, and software. Guidelines for automation security programs are found in AR 380–19. ULLS–A was developed with automated protection mechanisms available for use. All ULLS–A users will be familiar with ULLS–A Security Features User’s Guide, which explains specifically how the security mechanisms work, so that users are able to consistently and effectively protect ULLS–A information.

c. All procedures in this pamphlet apply to maintenance personnel using ULLS–A/LAS or the manual way of keeping forms and records. When different instructions apply to ULLS–A or LAS users, they are identified in the individual forms and records instructions. An End User Manual (AISM–25–L3P–AWD–ZZZ–EM) has been provided to ULLS–A users. This manual provides the information necessary to use the system effectively and explains the “How To” of the functions on ULLS–A.

d. Electronic forms were designed and developed during test and development of ULLS–A and LAS and are completely compatible with current forms, records, and procedures. All DA operational, maintenance, and historical forms used in ULLS–A or LAS programs have been revised to include an “E” following the number, for example, DA Form 2408–13–2–10. The “E” forms are electronically generated and filled with data at the same time. The “E” forms are filled out the same as the DA hard copy forms, except a few of the electronic forms have been designed to add, delete, or combine information automatically. Only the DA hard copy forms, without the “E,” will be preprinted, stacked, stored, and issued. The hard copy forms will be used as a back up system when the ULLS–A or LAS computer hardware or software becomes inoperative.

e. There is no requirement to have your organization maintain two sets of logbook forms while using ULLS–A or LAS. Once the conversion process from old historical (manual) forms to the new historical (automated) forms is completed, the old converted forms are for reference use only. The vision of the future is to have a paperless logbook; therefore, all historical forms will be converted. Old converted forms will be maintained in a safe place for at least 6 months. After 6 months, if the maintainer is satisfied that the converted records are correct the old converted forms may be destroyed.

f. All faults and inspections performed will be entered in the ULLS–A data base on a daily basis. This action may be delayed when away from home station, or the ULLS–A/LAS system is inoperative. Currently, related maintenance actions entered on the DA Form 2408–13–2 will not be entered in the ULLS–A/LAS data base. All manhours expended in correcting a fault or completing an inspection on the DA Form 2408–13–2 must be totaled and entered in the Correcting Information block on the corresponding DA Form 2408–13–1 for input into the ULLS–A/LAS data base.

g. The logbook flight pack will be closed out at the end of the mission day or before the first flight of the next mission day. The person printing the flight pack will be sure that all open faults are printed on the new DA Form 2408–13–1. He or she will place “CF” in the Action Taken block and enter his or her PID in the first PID block of the Correcting Information block of the old DA Form 2408–13–1 for the open fault. The printing of the flight pack may be delayed when away from home station or the ULLS–A or LAS system is inoperative.

h. ULLS–A works with the Army Materiel Status System (AMSS), which is the automated system for reporting readiness for aircraft and aviation systems that replaces the DA Forms 1352/1352–1. ULLS–A automatically triggers the AMSS system when a “X” or a circled “X” status symbol for faults, deficiencies, or conditions entered on a DA Form(s) 2408–13–1 or 2408–13–3 is changed. A problem is encountered when an aircraft has no faults, deficiencies, or conditions with a “X” or circled “X” status symbol on the DA Form(s) 2408–13–1 or 2408–13–3, but has faults, deficiencies, or conditions with a lesser status symbol requiring a DA Form 2408–13–2 for related maintenance actions, and one of the related maintenance actions has a “X” status symbol, which affects the readiness reporting. Since the DA Form 2408–13–2 is not automated and related maintenance actions are not entered into the ULLS–A data base, AMSS is not being updated to show the current and correct readiness data. Until this problem is resolved the following instructions will be used:

(1) As soon as a “X” status condition, which affects the readiness reporting, is entered on a DA Form 2408–13–2, a “X” entry will be made on the DA Form 2408–13–1 or 2408–13–3. Make the entry on the DA Form 2408–13–1 or 2408–13–3 in the first open Fault Information block. Enter a “X” status symbol in the STATUS block, the correct system code in the SYS block, the date the status went to a “X” in the DATE block, the time of day that the status went to a “X” in the TIME block, and the PID of the person making the entry in the PID block. Make an entry the same as the original fault, deficiency, or condition (that required the DA Form 2408–13–2) followed by “in process” in the FAULT/REMARKS section. Fill in the rest of the blocks per paragraph 2–10 Do NOT sign off the original fault, deficiency, or condition until the corrective action is completed.

(2) The Correcting Information block for the “X” entry will be corrected when the original fault, deficiency, or condition is completed. The person entering the corrective action will enter his or her PID in the PID block, and will enter “01” in the HOURS block.

(3) The Correcting Information block for original fault, deficiency, or condition will be completed per paragraphs 2–10. Enter the date the fault was corrected in the DATE block, and enter the time the fault was corrected in the TIME Block.

i. ULLS–A and LAS were designed to print the forms and records on card stock, the same size as the logbook. The logbook paper has been assigned NSN 7530–01–392–4969, Card, Tabulating Machine, Continuous Flat Fold. There is no requirement that the logbook paper has to be used. It may be used, or regular printer paper may be used to print the forms and records. Entering the
aviation data into the ULLS-A/LAS data base, on a daily basis and
doing regular backups, ensures that the data will be available if the
paper form is damaged or lost and a new form can be printed.

j. ULLS-A units will provide an automated input monthly to
Commander, AMC/COM, AMSAM-MMC-RE-FF (ULLS-A),
Redstone Arsenal, Huntsville, AL 35898–5230. AMCOM will provide
procedures to ULLS-A units on what the data requirement will be.

k. ULLS-A units finding a problem with the program will submit
a DA Form 5005–R, Engineering Change Proposal-Software (ECP-
S) to USA Information Systems, Software Development Center Lee,
ATTN: ASQB-ILS-D, Stop L-74, Ft. Lee, VA 23801–6065 and send a
copy to CDR, AMC/OM, ATTN: AMSAM-MMC-RE-FF, Redstone
Arsenal, Huntsville, AL 35898–5230. The ULLS-A customer assistance hot line number is DSN 687–1051.

1–24. Aircraft Quality Control Program

a. To be sure that the aircraft and aviation associated equipment
maintenance operations is providing the best possible support to
sustain aircraft safety and combat readiness, AVUM, AVIM, and
Depot-level maintenance activities will—

(1) Establish an effective QC and Technical Inspection (TI)
program as outlined in FM 1–500 (Army Aviation Maintenance, chapter
8, Army Quality Control and Technical Inspection).

(2) Maintain and support the QC program by meeting the follow-
ing objectives:

(a) Assignment of only skilled and qualified maintenance person-
nel to perform QC and TI functions.

(b) Establish QC and TI procedures to assure quality main-
tenance work is being performed on aircraft, components, modules,
systems, subsystems, aviation associated equipment, diagnostic
equipment, shops, forms, records, and files.

(c) Ensure that AVUM, AVIM and depot maintenance meets
established maintenance performance standards.

(d) Ensure that the QC function is managed independently of
other functions, such as, production control; maintenance; adminis-
trative; forms, records, and files keeping; allied shops; prepress anal-
ysis, and so on.

(e) Ensure that policy and procedures contained in DA Pamphlet
738–751 and TM 1–1500–342–23 are used as a standard for aero-
nautical equipment maintenance management policies and proce-
dures for forms, records, and files.

1–25. Aircraft weight and balance Control

a. Flight characteristics and structural limitations of aircraft are
directly dependent upon conditions of weight and balance (WB).
Gross weight and center of gravity (CG) have a bearing on perform-
ance, stability, and control of the aircraft. Hazardous flight condi-
tions and accidents resulting from out of limit conditions can be
prevented by adhering to principles set forth in AR 95–3, TM
1–1500–342–23, and Technical Order 1–1B–50 (Weight and
Balance).

b. Basic WB data is initially provided when the aircraft is
delivered to the Army. Then it becomes the responsibility of the
maintenance and operating activities to maintain accurate and timely
WB data.

c. Unit WB technicians will prepare and maintain up to date and
accurate WB files for aircraft in their unit. This will include weigh-
ing of aircraft at appointed times for the specific aircraft.

d. The pilot is responsible for accuracy of DD Form 365–4 and
that WB conditions of the aircraft remain within safe operating
limits.

e. Information necessary for control of WB of Army aircraft, to
include use and preparation of related forms are contained in AR
95–3, TM 1–1500–342–23, and aircraft –10 and –23 manuals or
equivalent manuals for nonstandard aircraft.

f. Aircraft that has equipment that is part of the basic aircraft
weight added to, removed from, or relocated within the aircraft,
because of maintenance or specific mission requirements, will not
be flown unless the WB change is documented by one of the
following methods:

(1) If treating the additions, removals, or relocations as perma-
nent, make entries on the DD Form 365–3 (Chart C-Basic Weight
and Balance Record) and establishing a new basic weight and mo-
ment. If the change in basic weight and moment is beyond limits
stated in TM 1–1500–342–23, a new DD Form 365–4 must be
prepared to reflect the new basic weight and moment to replace
those in the WB file.

(2) If the changes are of a temporary nature, make the follow-
ing entries on DA Form 2408–13–1:

(a) In Status Symbol block, enter a red diagonal (/).

(b) In Fault Information block, enter a description of the aircraft
equipment temporarily added, removed, or relocated. The resulting
increase or decrease in aircraft weight and moment will be included
in the entry. This entry will conclude with the statement “Change
not entered on DD Form 365–3.”

(c) Continue to reenter this deficiency on DA Form 2408–13–1,
or transfer it to DA Form 2408–14–1 until the aircraft is returned to
the previous configuration, or the DD Form 365–3 is updated to
reflect the change.

(d) Temporary changes in basic weight may be reflected on DA
Forms 2408–13–1 or 2408–14–1 for a period not to exceed 90 days.
The DD Form 365–3 will be updated to reflect the temporary
change at the end of this 90-day period. Otherwise, the aircraft
status will be changed to a Red “X” per paragraph 1–8.

(e) AR 95–3 authorizes use of electronic computer data sheets
when the information is the same as that required on the DD Form
365 series paper forms. The Edwards Automated Weight and Bal-
ance System (EAWBS) was adopted from the Air Force for Army
use in October 1986, as it meets the requirements of AR 95–3.
Printouts from this program are acceptable, instead of DD Forms
365 series paper forms. The EAWBS system is not designed to
accept nonlevel weighing data. It can be used for aircraft that are
weighted in a nonlevel attitude, for example, AH-64 helicopters,
only if a method to correct to equivalent level attitude data is
available. Only U.S. Government Agencies and their DOD contrac-
tors authorize the EAWBS for use. It will not be made available to
foreign governments. Nor will it be used in any contract, memo-
andum, or other agreement with a foreign government.

1–26. Aviation night vision goggles maintenance

Department of the Army forms and records for maintenance of night
vision goggles (NVG) used for aviation purposes have been desig-
nated and approved for use as prescribed in this pamphlet. The use
of forms, records, and procedures contained in DA Pamphlet
738–750 no longer apply to aviation NVGs. All units or activities
using and maintaining AN/PVS-5A, AN/PVS-5B, AN/PVS-5C,
(GM-6 and cut away face plates), and AN/AVS-6 (ANVIS) series
and related modified components will convert existing TAMMS and
other forms and records to comply with requirements of this
pamphlet.

1–27. Standard Army Maintenance System

a. The Standard Army Maintenance System (SAMS) for the
AVUM and AVIM levels of maintenance provides maintenance and
management information to each level of command, from the user
to the division or corps, wholesale, and DA levels. SAMS has not
been extended to all aviation intermediate support units/activities.

b. SAMS is divided into two levels: SAMS-1, which operates at
AVIM level; and SAMS-2, which operates at command levels
above AVIM level, such as Materiel Management Center (MMC),
division support command, corps support command, and levels of
management above corps.

(1) SAMS-1 tracks all work orders and repair parts, and
processes information received from supported units.

(2) SAMS-2 collects, stores, and retrieves maintenance informa-
tion from SAMS-1 sites, and allows managers to coordinate mainte-
nance workloads.

c. SAMS replaces the Maintenance Reporting and Management
System (MRM).
d. Unit level activities will report maintenance information to SAMS.

e. When the standard army management information system called ULLS-A is fielded to a company, not mission capable maintenance (NMCM) and not mission capable supply (NMCS) will be passed to SAMS using an output process in ULLS-A. Units without ULLS-A who are supported by a SAMS AVIM unit/activity will complete DA Form 2407/2407–1.

f. A DA Form 2405 (Maintenance Request Register) will be maintained at the unit level activity automated with SAMS (see fig 3–7). Using units will keep other forms as called for in chapters 2, 3, and 4, and appendix D.

g. The Organization Work Order Number (ORG WON) is the key to tracking the AVIM work done for the unit on each aircraft, component/module, or other unit equipment and it assists the unit in the NMCM process. A ORG WON is assigned to all SAMS work orders. It is also used in tracking NMCM time for the equipment belonging to each unit. See paragraph 3–11 for assignment of a ORG WON.

1–28. Aircraft component/module repair

a. All component/module repair performed at AVIM and depot level must be properly documented. Repair of a component/module performed by an AVIM or depot repair shop, such as, module repair, sheet metal repair, engine repair, and so on, will not be documented in the aircraft Flight Pack. AVIM level aircraft repair performed by an AVIM unit or depot, such as, phase maintenance inspection, periodic inspection, unscheduled maintenance and maintenance other than component/module repair will be documented in the aircraft Flight Pack.

(1) Repair of components/modules that could affect aircraft safety will be documented using DA Forms 2408–13–2 and 2408–13–3 in addition to DA Forms 2407/2407–1 and DD Form 1574.

(2) Repair of components/modules that do not affect safety of flight of the aircraft may be documented using DA Forms 2407/2407–1 and DD Form 1574 only.

b. When an activity requests maintenance from an AVIM unit or depot facility the following forms will be prepared by the requesting activity and accompany the component/module to be repaired:

(1) DA Form 2407 or automated work request for ULLS-A users.
(2) DD Form 1577–2 (Unserviceable (Repairable) Tag-Materiel).
(3) Computer generated DA Form 2408–13–2 for ULLS-A units.
(4) All historical forms and records.

c. When a work request is received, the AVIM or depot activity will—

(1) Perform an initial inspection of the item to be repaired. The quality control inspector will document the initial inspection and enter the fault verbatim from the DA Form 2407, block 24 to the DA Form 2408–13–3 for all components/modules that affect aircraft flight safety. The inspector will ensure that all required historical records are present. Faults discovered for components/modules not affecting safety will be documented on the DA Form 2407.

(2) Send the DA Forms 2408–13–3, 2407, and automated DA Form 2408–13–2, if supplied by an ULLS-A unit, with the item to be repaired after acceptance by the production control office.

(3) Record any faults discovered on DA Form 2408–13–3.

(4) Record related maintenance actions required to repair fault(s) on DA Form 2408–13–2.

(5) After completion of the repair, a quality control inspector will document the final inspection on the DA Form 2408–13–3 and make sure that all required historical records are updated for components/modules that affect flight safety. The inspector will also sign the DA Form 2407 (block 37a,) and a DD Form 1574 certifying the serviceability of the component/module.

(6) The DA Forms 2408–13–2 and 2408–13–3 will not be attached to the component/module or returned to the unit requesting the maintenance. These forms will be filed at the AVIM unit or depot. They may be destroyed 6 months after the date entered in block 37c of the DA Form 2407.

<table>
<thead>
<tr>
<th>Table 1–1</th>
<th>Red “X” Conditions for Aviation Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected Area</td>
<td>Condition</td>
</tr>
<tr>
<td>General</td>
<td>When an aircraft fails to meet operational needs of AR 95–1. As soon as you find a fault, failure, or condition serious enough to endanger the life of the aircrew or ground crew during operation or flight of aircraft or installed related mission equipment, or would cause further damage to the aircraft that would affect its airworthiness.</td>
</tr>
<tr>
<td>Component or module replacement</td>
<td>When the removal and replacement of any component/module assembly is such that improper reinstallation would affect safety-of-flight or create an operational hazard.</td>
</tr>
<tr>
<td>Safety-of-flight (SOF Message/TB or MWO)</td>
<td>Upon receipt of an emergency SOF Message/TB or emergency MWO.</td>
</tr>
<tr>
<td>Propeller area</td>
<td>When a propeller, propeller blade, or propeller governor is being replaced, removed and reinstalled, or when high revolutions per minute (RPM) settings or blade angle is being reset or adjusted.</td>
</tr>
<tr>
<td>Rotor Assemblies</td>
<td>When helicopter rotor assembly (assemblies), controls (main and tail rotor), or any component of these systems is being replaced, removed and reinstalled, or adjusted.</td>
</tr>
<tr>
<td>Engines</td>
<td>When maintenance work is done in the air intake area of gas turbine engines.</td>
</tr>
<tr>
<td>Flight or engine control systems</td>
<td>When an aircraft is undergoing an engine change.</td>
</tr>
<tr>
<td>Structural</td>
<td>Upon removal of any airframe structural (stress) panel, component and assembly that affects safety-off light or safe operation of the aircraft or installed mission related equipment.</td>
</tr>
<tr>
<td>Egress system</td>
<td>When an egress system has been partially or completely disassembled. When egress maintenance safety pins (over and above normal aircrew or ground safety pins) are installed to aid maintenance as called for in the maintenance technical manual that applies.</td>
</tr>
</tbody>
</table>
Table 1–1
Red "X" Conditions for Aviation Equipment —Continued

<table>
<thead>
<tr>
<th>Affected Area</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel, oil, hydraulic fluid, or lubricants</td>
<td>When maintenance is performed on the fuel system or any fuel system component while installed on the aircraft or the installed auxiliary power unit. This includes maintenance calling for entry into fuel tanks and cells, or installation of plugs or caps on the fuel system or vent lines. When an aircraft is serviced, by mistake or accidentally with the wrong type or grade of fuel, oil, hydraulic fluid, or lubricants.</td>
</tr>
<tr>
<td>Landing gear, brakes, or power steering</td>
<td>When the aircraft landing gear, brakes or power steering is inoperative on fixed wing aircraft.</td>
</tr>
<tr>
<td>Electrical</td>
<td>When a jump wire or other type of electrical shorting device is installed in an electrical system while performing maintenance.</td>
</tr>
<tr>
<td>Pitot static</td>
<td>When the aircraft pitot static system is inoperative.</td>
</tr>
<tr>
<td>Oil analysis</td>
<td>When a grounding action is taken as a result of an Army Oil Analysis Program (AOAP) laboratory finding.</td>
</tr>
<tr>
<td>Rigging pins</td>
<td>When rig pins are installed into any system.</td>
</tr>
<tr>
<td>Inspections</td>
<td>When a scheduled maintenance inspection, such as a Phase/Periodic inspection is not done when due to the established flying hour and during the progress of any scheduled maintenance inspection. When a special or recurring inspection carried on the DA Form 2408-18 was not done on the established flying hour, operating time, calendar date, rounds fired, etc., plus the allowed extension in section II, TM 1-1500-328-23.</td>
</tr>
<tr>
<td>Weight and balance</td>
<td>When entries on DA Form 2408-13-1 or 2408-14-1 showing temporary changes in aircraft basic weight (not updated on DD Form 365-3) are carried beyond the 90 day limit.</td>
</tr>
</tbody>
</table>

Table 1–2
Failure Codes—Alphabetical —Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Burst, exploded, ruptured</td>
</tr>
<tr>
<td>024</td>
<td>Calibration incorrect</td>
</tr>
<tr>
<td>025</td>
<td>Capacitance incorrect</td>
</tr>
<tr>
<td>120</td>
<td>Chafed</td>
</tr>
<tr>
<td>910</td>
<td>Chipped</td>
</tr>
<tr>
<td>180</td>
<td>Clogged</td>
</tr>
<tr>
<td>027</td>
<td>Collapsed</td>
</tr>
<tr>
<td>929</td>
<td>Component removal per DMWR</td>
</tr>
<tr>
<td>*800</td>
<td>Component removed/reinstalled to facilitate other maintenance</td>
</tr>
<tr>
<td>160</td>
<td>Contact/connection defective</td>
</tr>
<tr>
<td>306</td>
<td>Contamination</td>
</tr>
<tr>
<td>674</td>
<td>Controlled exchange</td>
</tr>
<tr>
<td>114</td>
<td>Controls inoperative</td>
</tr>
<tr>
<td>844</td>
<td>Corona effect</td>
</tr>
<tr>
<td>170</td>
<td>Corroded</td>
</tr>
<tr>
<td>190</td>
<td>Cracked</td>
</tr>
<tr>
<td>675</td>
<td>Crash damage</td>
</tr>
<tr>
<td>845</td>
<td>Crystallized</td>
</tr>
<tr>
<td>029</td>
<td>Current incorrect</td>
</tr>
<tr>
<td>116</td>
<td>Cut</td>
</tr>
<tr>
<td>846</td>
<td>Delaminated</td>
</tr>
<tr>
<td>200</td>
<td>Dented</td>
</tr>
<tr>
<td>210</td>
<td>Detent action poor</td>
</tr>
<tr>
<td>117</td>
<td>Deteriorated</td>
</tr>
<tr>
<td>230</td>
<td>Dirty</td>
</tr>
<tr>
<td>118</td>
<td>Disconnected</td>
</tr>
<tr>
<td>201</td>
<td>Distortion</td>
</tr>
<tr>
<td>235</td>
<td>Dry</td>
</tr>
<tr>
<td>293</td>
<td>Electrical power loss</td>
</tr>
<tr>
<td>295</td>
<td>Electromagnetic environmental effect (E3) Electronic interference/discharge</td>
</tr>
<tr>
<td>231</td>
<td>Elongated</td>
</tr>
<tr>
<td>802</td>
<td>Equipment previously modified, restored to original</td>
</tr>
<tr>
<td>234</td>
<td>Excessive G forces</td>
</tr>
<tr>
<td>015</td>
<td>Excessive noise (electronics)</td>
</tr>
<tr>
<td>508</td>
<td>Exposed to fire/high temperature</td>
</tr>
<tr>
<td>507</td>
<td>Exposed to salt water environment</td>
</tr>
<tr>
<td>290</td>
<td>Fails Diagnostic/automatic tests</td>
</tr>
<tr>
<td>051</td>
<td>Fails to tune or drifts</td>
</tr>
<tr>
<td>602</td>
<td>Failure caused by other component failure</td>
</tr>
<tr>
<td>281</td>
<td>Faulty reading</td>
</tr>
<tr>
<td>055</td>
<td>Feedback incorrect</td>
</tr>
<tr>
<td>240</td>
<td>Flaking</td>
</tr>
<tr>
<td>069</td>
<td>Flame out</td>
</tr>
<tr>
<td>037</td>
<td>Fluxuates, unstable</td>
</tr>
<tr>
<td>301</td>
<td>Foreign object damage</td>
</tr>
<tr>
<td>250</td>
<td>Frayed</td>
</tr>
<tr>
<td>748</td>
<td>Frequency, erratic or incorrect</td>
</tr>
<tr>
<td>179</td>
<td>Fuel pressure incorrect</td>
</tr>
<tr>
<td>280</td>
<td>Fungus effect</td>
</tr>
<tr>
<td>472</td>
<td>Fuse blown</td>
</tr>
<tr>
<td>061</td>
<td>Fused, includes melted</td>
</tr>
<tr>
<td>001</td>
<td>Gassy</td>
</tr>
<tr>
<td>214</td>
<td>Grooved</td>
</tr>
<tr>
<td>300</td>
<td>Grounded</td>
</tr>
<tr>
<td>311</td>
<td>Hard landing</td>
</tr>
<tr>
<td>855</td>
<td>Heat damage</td>
</tr>
<tr>
<td>320</td>
<td>High voltage breakdown</td>
</tr>
<tr>
<td>065</td>
<td>High VSWR</td>
</tr>
<tr>
<td>079</td>
<td>Hot firing damage</td>
</tr>
<tr>
<td>317</td>
<td>Hot start</td>
</tr>
<tr>
<td>248</td>
<td>Icing</td>
</tr>
<tr>
<td>916</td>
<td>Impending or incipient failure indicated by spectrometric oil analysis</td>
</tr>
<tr>
<td>703</td>
<td>Improper amplitude</td>
</tr>
<tr>
<td>627</td>
<td>Improper attenuation</td>
</tr>
<tr>
<td>688</td>
<td>Improper energy response</td>
</tr>
<tr>
<td>239</td>
<td>Improper fit, form, function</td>
</tr>
<tr>
<td>689</td>
<td>Improper source output</td>
</tr>
<tr>
<td>340</td>
<td>Improperly installed</td>
</tr>
<tr>
<td>088</td>
<td>Incorrect gain</td>
</tr>
<tr>
<td>064</td>
<td>Incorrect modulation</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>169</td>
<td>Incorrect voltage</td>
</tr>
<tr>
<td>923</td>
<td>Inspection required before use</td>
</tr>
<tr>
<td>350</td>
<td>Insulation breakdown</td>
</tr>
<tr>
<td>081</td>
<td>Interference</td>
</tr>
<tr>
<td>360</td>
<td>Intermittent</td>
</tr>
<tr>
<td>374</td>
<td>Internal failure</td>
</tr>
<tr>
<td>370</td>
<td>Jammed</td>
</tr>
<tr>
<td>381</td>
<td>Leaking (liquid)</td>
</tr>
<tr>
<td>918</td>
<td>Lightning strike</td>
</tr>
<tr>
<td>382</td>
<td>Liquid/vapor lock</td>
</tr>
<tr>
<td>383</td>
<td>Lock-on malfunction</td>
</tr>
<tr>
<td>730</td>
<td>Loose</td>
</tr>
<tr>
<td>385</td>
<td>Loose or missing rivets</td>
</tr>
<tr>
<td>105</td>
<td>Loose bolts, nuts, screws</td>
</tr>
<tr>
<td>181</td>
<td>Low compression</td>
</tr>
<tr>
<td>004</td>
<td>Low GM or emission</td>
</tr>
<tr>
<td>537</td>
<td>Low power or torque</td>
</tr>
<tr>
<td>092</td>
<td>Low Power (Electronic)</td>
</tr>
<tr>
<td>500</td>
<td>Lubrication (over or under) or absent</td>
</tr>
<tr>
<td>604</td>
<td>Manifold pressure beyond limits</td>
</tr>
<tr>
<td>225</td>
<td>Manufacturer's defect</td>
</tr>
<tr>
<td>040</td>
<td>Mechanical binding</td>
</tr>
<tr>
<td>372</td>
<td>Metal on magnetic plug</td>
</tr>
<tr>
<td>009</td>
<td>Microphonic</td>
</tr>
<tr>
<td>253</td>
<td>Misfires</td>
</tr>
<tr>
<td>750</td>
<td>Missing</td>
</tr>
<tr>
<td>106</td>
<td>Missing bolts, nuts, screws, safety wire</td>
</tr>
<tr>
<td>908</td>
<td>Miswired</td>
</tr>
<tr>
<td>420</td>
<td>Moisture saturation (condensation)</td>
</tr>
<tr>
<td>801</td>
<td>MWO compliance</td>
</tr>
<tr>
<td>798</td>
<td>MWO not applicable</td>
</tr>
<tr>
<td>797</td>
<td>MWO previously complied with</td>
</tr>
<tr>
<td>425</td>
<td>Nicked</td>
</tr>
<tr>
<td>305</td>
<td>No fuel cutoff</td>
</tr>
<tr>
<td>367</td>
<td>No indicating lights</td>
</tr>
<tr>
<td>022</td>
<td>No oscillation</td>
</tr>
<tr>
<td>255</td>
<td>No output/incorrect output</td>
</tr>
<tr>
<td>008</td>
<td>Noisy (Chattering)</td>
</tr>
<tr>
<td>919</td>
<td>Obsolete part turned in to supply</td>
</tr>
<tr>
<td>432</td>
<td>Off frequency</td>
</tr>
<tr>
<td>398</td>
<td>Oil consumption excessive</td>
</tr>
<tr>
<td>603</td>
<td>Oil in induction system</td>
</tr>
<tr>
<td>307</td>
<td>Oil leak</td>
</tr>
<tr>
<td>405</td>
<td>Oil pressure incorrect</td>
</tr>
<tr>
<td>450</td>
<td>Open</td>
</tr>
<tr>
<td>003</td>
<td>Open filament tube circuit</td>
</tr>
<tr>
<td>437</td>
<td>Operating error</td>
</tr>
<tr>
<td>457</td>
<td>Oscillating</td>
</tr>
<tr>
<td>790</td>
<td>Out of adjustment, includes out of tolerance/calibration</td>
</tr>
<tr>
<td>461</td>
<td>Output too high</td>
</tr>
<tr>
<td>462</td>
<td>Output too low</td>
</tr>
<tr>
<td>481</td>
<td>Over heats</td>
</tr>
<tr>
<td>021</td>
<td>Over loaded</td>
</tr>
<tr>
<td>259</td>
<td>Over size</td>
</tr>
<tr>
<td>464</td>
<td>Over speed</td>
</tr>
<tr>
<td>927</td>
<td>Pinched</td>
</tr>
<tr>
<td>520</td>
<td>Pitted</td>
</tr>
<tr>
<td>530</td>
<td>Polarity reversed</td>
</tr>
<tr>
<td>263</td>
<td>Poor bonding</td>
</tr>
<tr>
<td>964</td>
<td>Poor spectrum</td>
</tr>
<tr>
<td>977</td>
<td>Pressure incorrect</td>
</tr>
<tr>
<td>540</td>
<td>Punctured</td>
</tr>
<tr>
<td>476</td>
<td>Rate of feather slow</td>
</tr>
<tr>
<td>931</td>
<td>Removal of a one time use item</td>
</tr>
<tr>
<td>805</td>
<td>Removed for SOF Message or use analysis</td>
</tr>
<tr>
<td>804</td>
<td>Removed for scheduled maintenance</td>
</tr>
<tr>
<td>803</td>
<td>Removed for TC/RC</td>
</tr>
<tr>
<td>587</td>
<td>Resistance high</td>
</tr>
<tr>
<td>568</td>
<td>Resistance low</td>
</tr>
<tr>
<td>734</td>
<td>Rise time incorrect</td>
</tr>
<tr>
<td>324</td>
<td>RPM beta governing faulty</td>
</tr>
<tr>
<td>315</td>
<td>RPM fluctuation/incorrect</td>
</tr>
<tr>
<td>740</td>
<td>Saturation resistance high</td>
</tr>
<tr>
<td>935</td>
<td>Scored</td>
</tr>
<tr>
<td>473</td>
<td>Seal/gasket blown</td>
</tr>
<tr>
<td>840</td>
<td>Seized</td>
</tr>
<tr>
<td>799</td>
<td>Serviceable, no defect</td>
</tr>
<tr>
<td>807</td>
<td>Servo mag amp time constant</td>
</tr>
<tr>
<td>585</td>
<td>Sheared</td>
</tr>
<tr>
<td>196</td>
<td>Shorted</td>
</tr>
<tr>
<td>163</td>
<td>Slip ring or commutator failure</td>
</tr>
<tr>
<td>640</td>
<td>Slippage</td>
</tr>
<tr>
<td>314</td>
<td>Slow acceleration</td>
</tr>
<tr>
<td>316</td>
<td>Slow deceleration</td>
</tr>
<tr>
<td>159</td>
<td>Smoking</td>
</tr>
<tr>
<td>279</td>
<td>Spray pattern defective</td>
</tr>
<tr>
<td>271</td>
<td>Sprung</td>
</tr>
<tr>
<td>513</td>
<td>Stalls, compressor</td>
</tr>
<tr>
<td>329</td>
<td>Starting stall</td>
</tr>
<tr>
<td>922</td>
<td>Static display/museum use</td>
</tr>
<tr>
<td>928</td>
<td>Stolen or pilfered</td>
</tr>
<tr>
<td>821</td>
<td>Storm damage</td>
</tr>
<tr>
<td>660</td>
<td>Stripped</td>
</tr>
<tr>
<td>945</td>
<td>Structural failure</td>
</tr>
<tr>
<td>504</td>
<td>Sudden stoppage, blade/propeller strike</td>
</tr>
<tr>
<td>519</td>
<td>Surged</td>
</tr>
<tr>
<td>649</td>
<td>Sweep malfunction</td>
</tr>
<tr>
<td>695</td>
<td>Sync absent or incorrect</td>
</tr>
<tr>
<td>334</td>
<td>Temperature incorrect</td>
</tr>
<tr>
<td>664</td>
<td>Tension incorrect</td>
</tr>
<tr>
<td>274</td>
<td>Timing off</td>
</tr>
<tr>
<td>379</td>
<td>Tooth broken on gear</td>
</tr>
<tr>
<td>947</td>
<td>Torn</td>
</tr>
<tr>
<td>167</td>
<td>Torque incorrect</td>
</tr>
<tr>
<td>816</td>
<td>Total impedance, high</td>
</tr>
<tr>
<td>817</td>
<td>Total impedance, low</td>
</tr>
<tr>
<td>924</td>
<td>Transportation damage</td>
</tr>
<tr>
<td>926</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>925</td>
<td>Turned in to supply (Removed from maintenance trainer aircraft)</td>
</tr>
<tr>
<td>561</td>
<td>Unable to adjust limit</td>
</tr>
<tr>
<td>670</td>
<td>Unbalanced</td>
</tr>
<tr>
<td>275</td>
<td>Undersize</td>
</tr>
<tr>
<td>680</td>
<td>Unstable</td>
</tr>
<tr>
<td>930</td>
<td>Used for maintenance trainer aircraft</td>
</tr>
<tr>
<td>690</td>
<td>Vibration excessive</td>
</tr>
<tr>
<td>692</td>
<td>Video faulty</td>
</tr>
<tr>
<td>701</td>
<td>Warped</td>
</tr>
<tr>
<td>722</td>
<td>Weld Cracked or broken</td>
</tr>
<tr>
<td>622</td>
<td>Wet</td>
</tr>
<tr>
<td>020</td>
<td>Worn Excessively</td>
</tr>
<tr>
<td>950</td>
<td>Wrong part</td>
</tr>
</tbody>
</table>

(1) Mechanical, General (Alphabetical)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>Adjustment improper</td>
</tr>
<tr>
<td>031</td>
<td>Alignment improper</td>
</tr>
<tr>
<td>710</td>
<td>Bearing or bushing failure</td>
</tr>
<tr>
<td>135</td>
<td>Binding, includes friction excessive, locked</td>
</tr>
<tr>
<td>050</td>
<td>Blistered</td>
</tr>
<tr>
<td>060</td>
<td>Brittle</td>
</tr>
<tr>
<td>070</td>
<td>Broken</td>
</tr>
<tr>
<td>108</td>
<td>Broken safety wire or key</td>
</tr>
<tr>
<td>109</td>
<td>Buckled or twisted</td>
</tr>
<tr>
<td>900</td>
<td>Burned, includes charred</td>
</tr>
<tr>
<td>171</td>
<td>Burred</td>
</tr>
<tr>
<td>111</td>
<td>Burst, exploded, ruptured</td>
</tr>
<tr>
<td>120</td>
<td>Chafed</td>
</tr>
<tr>
<td>910</td>
<td>Chipped</td>
</tr>
<tr>
<td>114</td>
<td>Controls inoperative</td>
</tr>
<tr>
<td>845</td>
<td>Crystallized</td>
</tr>
<tr>
<td>117</td>
<td>Deteriorated</td>
</tr>
<tr>
<td>118</td>
<td>Disconnected</td>
</tr>
<tr>
<td>201</td>
<td>Distortion</td>
</tr>
<tr>
<td>231</td>
<td>Elongated</td>
</tr>
<tr>
<td>061</td>
<td>Fused, includes melted</td>
</tr>
<tr>
<td>214</td>
<td>Grooved</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>239</td>
<td>Improper fit, form, function</td>
</tr>
<tr>
<td>081</td>
<td>Interference</td>
</tr>
<tr>
<td>360</td>
<td>Intermittent</td>
</tr>
<tr>
<td>730</td>
<td>Loose</td>
</tr>
<tr>
<td>105</td>
<td>Loose bolts, nuts, screws</td>
</tr>
<tr>
<td>385</td>
<td>Loose or missing rivets</td>
</tr>
<tr>
<td>225</td>
<td>Manufacturer’s defect</td>
</tr>
<tr>
<td>750</td>
<td>Missing</td>
</tr>
<tr>
<td>008</td>
<td>Noisy (chattering)</td>
</tr>
<tr>
<td>790</td>
<td>Out of adjustment, includes out of tolerance/calibration</td>
</tr>
<tr>
<td>481</td>
<td>Over heats</td>
</tr>
<tr>
<td>464</td>
<td>Over speed</td>
</tr>
<tr>
<td>259</td>
<td>Oversize</td>
</tr>
<tr>
<td>263</td>
<td>Poor bonding</td>
</tr>
<tr>
<td>473</td>
<td>Seal/Gasket blown</td>
</tr>
<tr>
<td>585</td>
<td>Sheared 640 Slippage</td>
</tr>
<tr>
<td>159</td>
<td>Smoking</td>
</tr>
<tr>
<td>660</td>
<td>Stripped</td>
</tr>
<tr>
<td>945</td>
<td>Structural failure</td>
</tr>
<tr>
<td>554</td>
<td>Sudden stoppage, blade/propeller strike</td>
</tr>
<tr>
<td>334</td>
<td>Temperature incorrect</td>
</tr>
<tr>
<td>379</td>
<td>Tooth broken on gear</td>
</tr>
<tr>
<td>561</td>
<td>Unable to adjust limits</td>
</tr>
<tr>
<td>670</td>
<td>Unbalanced</td>
</tr>
<tr>
<td>680</td>
<td>Unstable</td>
</tr>
<tr>
<td>690</td>
<td>Vibration excessive</td>
</tr>
<tr>
<td>722</td>
<td>Weld cracked or broken</td>
</tr>
<tr>
<td>020</td>
<td>Worn excessively</td>
</tr>
</tbody>
</table>

(2) Oil/Fuel/Air

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>Air leak</td>
</tr>
<tr>
<td>180</td>
<td>Clogged</td>
</tr>
<tr>
<td>235</td>
<td>Dry</td>
</tr>
<tr>
<td>290</td>
<td>Fails diagnostic/automatic tests</td>
</tr>
<tr>
<td>281</td>
<td>Faulty reading</td>
</tr>
<tr>
<td>037</td>
<td>Fluctuates, unstable</td>
</tr>
<tr>
<td>179</td>
<td>Fuel pressure incorrect</td>
</tr>
<tr>
<td>916</td>
<td>Impeding or incipient failure indicated by spectrometric oil analysis</td>
</tr>
<tr>
<td>381</td>
<td>Leaking (liquid)</td>
</tr>
<tr>
<td>382</td>
<td>Liquid/vapor lock</td>
</tr>
<tr>
<td>372</td>
<td>Metal on magnetic plug</td>
</tr>
<tr>
<td>305</td>
<td>No fuel cutoff</td>
</tr>
<tr>
<td>367</td>
<td>No indicating lights</td>
</tr>
<tr>
<td>398</td>
<td>Oil consumption excessive</td>
</tr>
<tr>
<td>603</td>
<td>Oil in Induction System</td>
</tr>
<tr>
<td>405</td>
<td>Oil pressure incorrect</td>
</tr>
<tr>
<td>977</td>
<td>Pressure incorrect</td>
</tr>
<tr>
<td>324</td>
<td>RPM beta governing faulty</td>
</tr>
<tr>
<td>315</td>
<td>RPM fluctuation/incorrect</td>
</tr>
<tr>
<td>279</td>
<td>Spray pattern defective</td>
</tr>
</tbody>
</table>

(3) Environmental

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>306</td>
<td>Contamination</td>
</tr>
<tr>
<td>230</td>
<td>Dirty</td>
</tr>
<tr>
<td>507</td>
<td>Exposed to salt water environment</td>
</tr>
<tr>
<td>280</td>
<td>Fungus effect</td>
</tr>
<tr>
<td>248</td>
<td>Icing</td>
</tr>
<tr>
<td>295</td>
<td>Electromagnetic environmental effect (E3) Electronic interference/discharge</td>
</tr>
<tr>
<td>420</td>
<td>Moisture saturation (condensation)</td>
</tr>
</tbody>
</table>

(4) Electrical/Electronic

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>Arcing, arced</td>
</tr>
<tr>
<td>693</td>
<td>Audio faulty</td>
</tr>
<tr>
<td>080</td>
<td>Burned out</td>
</tr>
<tr>
<td>024</td>
<td>Calibration incorrect</td>
</tr>
<tr>
<td>025</td>
<td>Capacitance incorrect</td>
</tr>
<tr>
<td>160</td>
<td>Contact/connection defective</td>
</tr>
<tr>
<td>844</td>
<td>Corona effect</td>
</tr>
<tr>
<td>029</td>
<td>Current incorrect</td>
</tr>
</tbody>
</table>

(5) Engine Failure Codes (Alphabetical)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>Air leak</td>
</tr>
<tr>
<td>128</td>
<td>Airstart failure</td>
</tr>
<tr>
<td>129</td>
<td>Backfiring</td>
</tr>
<tr>
<td>210</td>
<td>Detent action poor</td>
</tr>
<tr>
<td>069</td>
<td>Flame out</td>
</tr>
<tr>
<td>079</td>
<td>Hot firing damage</td>
</tr>
<tr>
<td>317</td>
<td>Hot start</td>
</tr>
<tr>
<td>374</td>
<td>Internal failure</td>
</tr>
<tr>
<td>381</td>
<td>Leaking (liquid)</td>
</tr>
<tr>
<td>181</td>
<td>Low compression</td>
</tr>
<tr>
<td>537</td>
<td>Low power or torque</td>
</tr>
<tr>
<td>604</td>
<td>Manifold pressure beyond limits</td>
</tr>
<tr>
<td>225</td>
<td>Manufacturer’s defect</td>
</tr>
<tr>
<td>372</td>
<td>Metal on magnetic plug</td>
</tr>
<tr>
<td>253</td>
<td>Misfires</td>
</tr>
<tr>
<td>750</td>
<td>Missing</td>
</tr>
<tr>
<td>398</td>
<td>Oil consumption excessive</td>
</tr>
<tr>
<td>603</td>
<td>Oil in induction system</td>
</tr>
<tr>
<td>405</td>
<td>Oil pressure incorrect</td>
</tr>
<tr>
<td>481</td>
<td>Over heats</td>
</tr>
<tr>
<td>464</td>
<td>Over speed</td>
</tr>
<tr>
<td>476</td>
<td>Rate of feather slow</td>
</tr>
<tr>
<td>324</td>
<td>RPM beta governing faulty</td>
</tr>
<tr>
<td>315</td>
<td>RPM fluctuation/incorrect</td>
</tr>
<tr>
<td>314</td>
<td>Slow acceleration</td>
</tr>
<tr>
<td>318</td>
<td>Slow deceleration</td>
</tr>
</tbody>
</table>
Table 1–2
Failure Codes—Alphabetical —Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>Smoking</td>
</tr>
<tr>
<td>513</td>
<td>Stalls-compressor</td>
</tr>
<tr>
<td>329</td>
<td>Starting stall</td>
</tr>
<tr>
<td>519</td>
<td>Surged</td>
</tr>
<tr>
<td>274</td>
<td>Timing off</td>
</tr>
<tr>
<td>167</td>
<td>Torque incorrect</td>
</tr>
</tbody>
</table>

6) Operationally Induced

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>717</td>
<td>Accident damage</td>
</tr>
<tr>
<td>998</td>
<td>ASAM/TB compliance</td>
</tr>
<tr>
<td>731</td>
<td>Battle damage</td>
</tr>
<tr>
<td>917</td>
<td>Bird strike</td>
</tr>
<tr>
<td>929</td>
<td>Component removal per DMWR</td>
</tr>
<tr>
<td>800</td>
<td>Component removed/reinstalled to facilitate other maintenance</td>
</tr>
<tr>
<td>674</td>
<td>Controlled exchange</td>
</tr>
<tr>
<td>675</td>
<td>Crash damage</td>
</tr>
<tr>
<td>802</td>
<td>Equipment previously modified, restored to original</td>
</tr>
<tr>
<td>234</td>
<td>Excessive G forces</td>
</tr>
<tr>
<td>602</td>
<td>Failure caused by other component failure</td>
</tr>
<tr>
<td>301</td>
<td>Foreign object damage</td>
</tr>
<tr>
<td>311</td>
<td>Hard landing</td>
</tr>
<tr>
<td>923</td>
<td>Inspection required before use</td>
</tr>
<tr>
<td>918</td>
<td>Lightning strike</td>
</tr>
<tr>
<td>500</td>
<td>Lubrication (over, under or absent)</td>
</tr>
<tr>
<td>225</td>
<td>Manufacturer’s defect</td>
</tr>
<tr>
<td>801</td>
<td>MWO compliance</td>
</tr>
<tr>
<td>798</td>
<td>MWO not applicable</td>
</tr>
<tr>
<td>797</td>
<td>MWO previously complied with</td>
</tr>
<tr>
<td>919</td>
<td>Obsolete part turned in to supply</td>
</tr>
<tr>
<td>437</td>
<td>Operating error</td>
</tr>
<tr>
<td>021</td>
<td>Over loaded</td>
</tr>
<tr>
<td>464</td>
<td>Over speed</td>
</tr>
<tr>
<td>931</td>
<td>Removal of a one time use item</td>
</tr>
<tr>
<td>805</td>
<td>Removed for Safety of Flight Msg/use/analysis</td>
</tr>
<tr>
<td>804</td>
<td>Removed for scheduled maintenance</td>
</tr>
<tr>
<td>803</td>
<td>Removed for time change/retirement change</td>
</tr>
<tr>
<td>799</td>
<td>Serviceable, no defect</td>
</tr>
<tr>
<td>922</td>
<td>Static display/museum use</td>
</tr>
<tr>
<td>928</td>
<td>Stolen or pilfered</td>
</tr>
<tr>
<td>921</td>
<td>Storm damage</td>
</tr>
<tr>
<td>924</td>
<td>Transportation damage</td>
</tr>
<tr>
<td>926</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>925</td>
<td>Turned in to supply (Removed from maintenance trainer aircraft)</td>
</tr>
<tr>
<td>930</td>
<td>Used for maintenance trainer aircraft</td>
</tr>
<tr>
<td>950</td>
<td>Wrong part</td>
</tr>
</tbody>
</table>

Notes:

1. This table contains a list of codes to be entered on various aviation forms and records referenced in this pamphlet to show reason for failure or removal of a component, module, assembly, subassembly, or repair part. These codes are also used for removal of an item to accomplish a maintenance action, to indicate that a maintenance action is pending, that the item is being used for static display, or used for training purposes.

2. These codes will be used as the standard when automating any maintenance function.

3. No additional codes will be assigned unless authorized by Department of the Army, ATTN: DALO-SMV, 500 Army Pentagon, Room 1E572, Washington, DC 20310.

4. Those codes marked with an asterisk (*) will not be used on DA Form 2410.

5. Those codes marked with two asterisks (**) will only be used on DA Form 2410, reverse side of copy 2.

Table 1–3
Failure Codes—Numerical

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Gassy</td>
</tr>
<tr>
<td>002</td>
<td>Air Leak</td>
</tr>
<tr>
<td>003</td>
<td>Open filament tube circuit</td>
</tr>
<tr>
<td>004</td>
<td>Low GM or emission</td>
</tr>
<tr>
<td>007</td>
<td>Arcing, arced</td>
</tr>
<tr>
<td>008</td>
<td>Noisy (Chattering)</td>
</tr>
<tr>
<td>009</td>
<td>Microphonic</td>
</tr>
<tr>
<td>015</td>
<td>Excessive noise (electronics)</td>
</tr>
<tr>
<td>020</td>
<td>Worn excessively</td>
</tr>
<tr>
<td>021</td>
<td>Over loaded</td>
</tr>
<tr>
<td>022</td>
<td>No oscillation</td>
</tr>
<tr>
<td>024</td>
<td>Calibration incorrect</td>
</tr>
<tr>
<td>025</td>
<td>Capacitance incorrect</td>
</tr>
<tr>
<td>027</td>
<td>Collapsed</td>
</tr>
<tr>
<td>029</td>
<td>Current incorrect</td>
</tr>
<tr>
<td>031</td>
<td>Alignment improper</td>
</tr>
<tr>
<td>037</td>
<td>Fluctuates/unsuitable</td>
</tr>
<tr>
<td>040</td>
<td>Mechanical binding</td>
</tr>
<tr>
<td>050</td>
<td>Blistered</td>
</tr>
<tr>
<td>051</td>
<td>Fails to tune or drifts</td>
</tr>
<tr>
<td>055</td>
<td>Feedback incorrect</td>
</tr>
<tr>
<td>060</td>
<td>Brittle</td>
</tr>
<tr>
<td>061</td>
<td>Fused, includes melted</td>
</tr>
<tr>
<td>064</td>
<td>Incorrect modulation</td>
</tr>
<tr>
<td>065</td>
<td>High VSWR</td>
</tr>
<tr>
<td>069</td>
<td>Flame out</td>
</tr>
<tr>
<td>070</td>
<td>Broken</td>
</tr>
<tr>
<td>079</td>
<td>Hot firing damage</td>
</tr>
<tr>
<td>080</td>
<td>Burned out</td>
</tr>
<tr>
<td>081</td>
<td>Interference</td>
</tr>
<tr>
<td>088</td>
<td>Incorrect gain</td>
</tr>
<tr>
<td>092</td>
<td>Low Power (Electronic)</td>
</tr>
<tr>
<td>105</td>
<td>Loose bolts, nuts, screws</td>
</tr>
<tr>
<td>106</td>
<td>Missing bolts, nuts, screws</td>
</tr>
<tr>
<td>108</td>
<td>Broken safety wire or key</td>
</tr>
<tr>
<td>109</td>
<td>Buckled or twisted</td>
</tr>
<tr>
<td>111</td>
<td>Burst, exploded, ruptured</td>
</tr>
<tr>
<td>114</td>
<td>Controls inoperative</td>
</tr>
<tr>
<td>116</td>
<td>Cut</td>
</tr>
<tr>
<td>117</td>
<td>Deteriorated</td>
</tr>
<tr>
<td>118</td>
<td>Disconnected</td>
</tr>
<tr>
<td>120</td>
<td>Chafed</td>
</tr>
<tr>
<td>127</td>
<td>Adjustment improper</td>
</tr>
<tr>
<td>128</td>
<td>Air start failure</td>
</tr>
<tr>
<td>129</td>
<td>Backfiring</td>
</tr>
<tr>
<td>135</td>
<td>Binding, includes friction excessive, locked</td>
</tr>
<tr>
<td>159</td>
<td>Smoking</td>
</tr>
<tr>
<td>160</td>
<td>Contact/connection defective</td>
</tr>
<tr>
<td>163</td>
<td>Slip ring or commutator failure</td>
</tr>
<tr>
<td>167</td>
<td>Torque incorrect</td>
</tr>
<tr>
<td>169</td>
<td>Incorrect voltage</td>
</tr>
<tr>
<td>170</td>
<td>Corroded</td>
</tr>
<tr>
<td>171</td>
<td>Burned</td>
</tr>
<tr>
<td>179</td>
<td>Fuel pressure incorrect</td>
</tr>
<tr>
<td>180</td>
<td>Clogged</td>
</tr>
<tr>
<td>181</td>
<td>Low compression</td>
</tr>
<tr>
<td>190</td>
<td>Cracked</td>
</tr>
<tr>
<td>196</td>
<td>Shorted</td>
</tr>
<tr>
<td>200</td>
<td>Dented</td>
</tr>
<tr>
<td>201</td>
<td>Distortion</td>
</tr>
<tr>
<td>210</td>
<td>Detent action poor</td>
</tr>
<tr>
<td>214</td>
<td>Grooved</td>
</tr>
<tr>
<td>225</td>
<td>Manufacturer’s defect</td>
</tr>
<tr>
<td>230</td>
<td>Dirty</td>
</tr>
<tr>
<td>231</td>
<td>Elongated</td>
</tr>
<tr>
<td>234</td>
<td>Excessive G forces</td>
</tr>
<tr>
<td>235</td>
<td>Dry</td>
</tr>
<tr>
<td>239</td>
<td>Improper fit, form, function</td>
</tr>
<tr>
<td>240</td>
<td>Flaking</td>
</tr>
<tr>
<td>248</td>
<td>Icing</td>
</tr>
<tr>
<td>250</td>
<td>Frayed</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>253</td>
<td>Misfires</td>
</tr>
<tr>
<td>255</td>
<td>No output/incorrect output</td>
</tr>
<tr>
<td>259</td>
<td>Over size</td>
</tr>
<tr>
<td>263</td>
<td>Poor bonding</td>
</tr>
<tr>
<td>271</td>
<td>Sprung</td>
</tr>
<tr>
<td>274</td>
<td>Timing off</td>
</tr>
<tr>
<td>275</td>
<td>Undersize</td>
</tr>
<tr>
<td>279</td>
<td>Spray pattern defective</td>
</tr>
<tr>
<td>280</td>
<td>Fungus effect</td>
</tr>
<tr>
<td>281</td>
<td>Faulty reading</td>
</tr>
<tr>
<td>290</td>
<td>Fails diagnostic/automatic tests</td>
</tr>
<tr>
<td>293</td>
<td>Electrical power loss</td>
</tr>
<tr>
<td>295</td>
<td>Electromagnetic environmental effect (E3) Electronic interference/discharge</td>
</tr>
<tr>
<td>300</td>
<td>Grounded</td>
</tr>
<tr>
<td>301</td>
<td>Foreign object damage</td>
</tr>
<tr>
<td>305</td>
<td>No fuel cutoff</td>
</tr>
<tr>
<td>306</td>
<td>Contamination</td>
</tr>
<tr>
<td>307</td>
<td>Oil leak</td>
</tr>
<tr>
<td>311</td>
<td>Hard landing</td>
</tr>
<tr>
<td>314</td>
<td>Slow acceleration</td>
</tr>
<tr>
<td>315</td>
<td>RPM fluctuation/incorrect</td>
</tr>
<tr>
<td>317</td>
<td>Hot start</td>
</tr>
<tr>
<td>318</td>
<td>Slow deceleration</td>
</tr>
<tr>
<td>320</td>
<td>High voltage breakdown</td>
</tr>
<tr>
<td>324</td>
<td>RPM beta governing faulty</td>
</tr>
<tr>
<td>329</td>
<td>Starting stall</td>
</tr>
<tr>
<td>334</td>
<td>Temperature incorrect</td>
</tr>
<tr>
<td>340</td>
<td>Improperly installed</td>
</tr>
<tr>
<td>350</td>
<td>Insulation breakdown</td>
</tr>
<tr>
<td>360</td>
<td>Intermittent</td>
</tr>
<tr>
<td>367</td>
<td>No indicating lights</td>
</tr>
<tr>
<td>370</td>
<td>Jammed</td>
</tr>
<tr>
<td>372</td>
<td>Metal on magnetic plug</td>
</tr>
<tr>
<td>374</td>
<td>Internal failure</td>
</tr>
<tr>
<td>379</td>
<td>Tooth broken on gear</td>
</tr>
<tr>
<td>381</td>
<td>Leaking (liquid)</td>
</tr>
<tr>
<td>382</td>
<td>Liquid/vapor lock</td>
</tr>
<tr>
<td>383</td>
<td>Lock-on malfunction</td>
</tr>
<tr>
<td>385</td>
<td>Loose or missing rivets</td>
</tr>
<tr>
<td>398</td>
<td>Oil consumption excessive</td>
</tr>
<tr>
<td>405</td>
<td>Oil pressure incorrect</td>
</tr>
<tr>
<td>420</td>
<td>Moisture saturation (condensation)</td>
</tr>
<tr>
<td>425</td>
<td>Nicked</td>
</tr>
<tr>
<td>432</td>
<td>Off frequency</td>
</tr>
<tr>
<td>439</td>
<td>Operating error</td>
</tr>
<tr>
<td>450</td>
<td>Open</td>
</tr>
<tr>
<td>457</td>
<td>Oscillating</td>
</tr>
<tr>
<td>461</td>
<td>Output too high</td>
</tr>
<tr>
<td>462</td>
<td>Output too low</td>
</tr>
<tr>
<td>464</td>
<td>Over speed</td>
</tr>
<tr>
<td>472</td>
<td>Fuse blown</td>
</tr>
<tr>
<td>473</td>
<td>Seal/gasket blown</td>
</tr>
<tr>
<td>476</td>
<td>Rate of feather slow</td>
</tr>
<tr>
<td>481</td>
<td>Over heats</td>
</tr>
<tr>
<td>500</td>
<td>Lubrication (over or under) or absent</td>
</tr>
<tr>
<td>504</td>
<td>Sudden stoppage, blade/propeller strike</td>
</tr>
<tr>
<td>507</td>
<td>Exposed to salt water environment</td>
</tr>
<tr>
<td>508</td>
<td>Exposed to fire/high temperature</td>
</tr>
<tr>
<td>513</td>
<td>Stalls, compressor</td>
</tr>
<tr>
<td>519</td>
<td>Surged</td>
</tr>
<tr>
<td>520</td>
<td>Pitted</td>
</tr>
<tr>
<td>530</td>
<td>Polarity reversed</td>
</tr>
<tr>
<td>537</td>
<td>Low power or torque</td>
</tr>
<tr>
<td>540</td>
<td>Punctured</td>
</tr>
<tr>
<td>561</td>
<td>Unable to adjust limit</td>
</tr>
<tr>
<td>567</td>
<td>Resistance high</td>
</tr>
<tr>
<td>568</td>
<td>Resistance low</td>
</tr>
<tr>
<td>585</td>
<td>Sheared</td>
</tr>
<tr>
<td>602</td>
<td>Failure caused by other component failure</td>
</tr>
<tr>
<td>603</td>
<td>Oil in induction system</td>
</tr>
<tr>
<td>604</td>
<td>Manifold pressure beyond limits</td>
</tr>
<tr>
<td>622</td>
<td>Wet</td>
</tr>
<tr>
<td>627</td>
<td>Improper attenuation</td>
</tr>
<tr>
<td>640</td>
<td>Slippage</td>
</tr>
<tr>
<td>649</td>
<td>Sweep malfunction</td>
</tr>
<tr>
<td>660</td>
<td>Stripped</td>
</tr>
<tr>
<td>664</td>
<td>Tension incorrect</td>
</tr>
<tr>
<td>670</td>
<td>Unbalanced</td>
</tr>
<tr>
<td>674</td>
<td>Controlled exchange</td>
</tr>
<tr>
<td>675</td>
<td>Crash damage</td>
</tr>
<tr>
<td>680</td>
<td>Unstable</td>
</tr>
<tr>
<td>688</td>
<td>Improper energy response</td>
</tr>
<tr>
<td>689</td>
<td>Improper source output</td>
</tr>
<tr>
<td>690</td>
<td>Vibration excessive</td>
</tr>
<tr>
<td>692</td>
<td>Video faulty</td>
</tr>
<tr>
<td>693</td>
<td>Audio faulty</td>
</tr>
<tr>
<td>695</td>
<td>Sync absent or incorrect</td>
</tr>
<tr>
<td>701</td>
<td>Warped</td>
</tr>
<tr>
<td>703</td>
<td>Improper amplitude</td>
</tr>
<tr>
<td>705</td>
<td>Beyond specified tolerance</td>
</tr>
<tr>
<td>710</td>
<td>Bearing or bushing failure</td>
</tr>
<tr>
<td>717</td>
<td>Accident damage</td>
</tr>
<tr>
<td>720</td>
<td>Brush failure/worn excessively</td>
</tr>
<tr>
<td>722</td>
<td>Weld cracked or broken</td>
</tr>
<tr>
<td>730</td>
<td>Loose</td>
</tr>
<tr>
<td>731</td>
<td>Battle damage</td>
</tr>
<tr>
<td>734</td>
<td>Rise time incorrect</td>
</tr>
<tr>
<td>740</td>
<td>Saturation resistance high</td>
</tr>
<tr>
<td>748</td>
<td>Frequency, erratic or incorrect</td>
</tr>
<tr>
<td>750</td>
<td>Missing</td>
</tr>
<tr>
<td>780</td>
<td>Bent</td>
</tr>
<tr>
<td>790</td>
<td>Out of adjustment, includes out of tolerance/calibration</td>
</tr>
<tr>
<td>797</td>
<td>MWO previously complied with</td>
</tr>
<tr>
<td>798</td>
<td>MWO not applicable</td>
</tr>
<tr>
<td>799</td>
<td>Serviceable, no defect</td>
</tr>
<tr>
<td>800</td>
<td>Component removal/installation to facilitate other maintenance</td>
</tr>
<tr>
<td>801</td>
<td>MWO application</td>
</tr>
<tr>
<td>802</td>
<td>Equipment previously modified, restored to original</td>
</tr>
<tr>
<td>803</td>
<td>Removed for time change/retirement change</td>
</tr>
<tr>
<td>804</td>
<td>Removed for scheduled maintenance</td>
</tr>
<tr>
<td>805</td>
<td>Removed for Safety of Flight Msg/use/analysis</td>
</tr>
<tr>
<td>807</td>
<td>Servo mag amp time constant</td>
</tr>
<tr>
<td>816</td>
<td>Total impedance, high</td>
</tr>
<tr>
<td>817</td>
<td>Total impedance, low</td>
</tr>
<tr>
<td>840</td>
<td>Seized</td>
</tr>
<tr>
<td>844</td>
<td>Corona effect</td>
</tr>
<tr>
<td>845</td>
<td>Crystallized</td>
</tr>
<tr>
<td>846</td>
<td>Delaminated</td>
</tr>
<tr>
<td>855</td>
<td>Heat damage</td>
</tr>
<tr>
<td>900</td>
<td>Burned, includes charred</td>
</tr>
<tr>
<td>908</td>
<td>Miswired</td>
</tr>
<tr>
<td>910</td>
<td>Chipped</td>
</tr>
<tr>
<td>916</td>
<td>Impending or incipient failure indicated by spectrometric oil analysis</td>
</tr>
<tr>
<td>917</td>
<td>Bird strike</td>
</tr>
<tr>
<td>918</td>
<td>Lightning strike</td>
</tr>
<tr>
<td>919</td>
<td>Obsolete part turned in to supply</td>
</tr>
<tr>
<td>921</td>
<td>Storm damage</td>
</tr>
<tr>
<td>922</td>
<td>Static display/museum use</td>
</tr>
<tr>
<td>923</td>
<td>Inspection required before use</td>
</tr>
<tr>
<td>924</td>
<td>Transportation damage</td>
</tr>
<tr>
<td>925</td>
<td>Turned in to supply (Removed from maintenance trainer aircraft)</td>
</tr>
<tr>
<td>926</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>927</td>
<td>Pinched</td>
</tr>
<tr>
<td>928</td>
<td>Stolen or pilfered</td>
</tr>
<tr>
<td>935</td>
<td>Scored</td>
</tr>
<tr>
<td>945</td>
<td>Structural failure</td>
</tr>
<tr>
<td>947</td>
<td>Torn</td>
</tr>
<tr>
<td>950</td>
<td>Wrong part</td>
</tr>
<tr>
<td>964</td>
<td>Poor spectrum</td>
</tr>
<tr>
<td>977</td>
<td>Pressure incorrect</td>
</tr>
</tbody>
</table>
Table 1–3
Failure Codes—Numerical—Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>998</td>
<td>ASAM/TB compliance</td>
</tr>
</tbody>
</table>

Notes:
1. This table contains a list of codes to be entered on various aviation forms and records referenced in this pamphlet to show reason for failure or removal of a component, module, assembly, subassembly, or repair part. These codes are also used for removal of an item to accomplish a maintenance action, to indicate that a maintenance action is pending, that the item is being used for static display, or used for training purposes.
2. These codes will be used as the standard when automating any maintenance function.
3. No additional codes will be assigned unless authorized by Department of the Army, ATTN: DALO-SMV, 500 Army Pentagon, Room 1E572, Washington, DC 20310.
4. Those codes marked with an asterisk (*) will not be used on DA Form 2410.
5. Those codes marked with two asterisks (**) will only be used on DA Form 2410, reverse side of copy 2.

Table 1–4
When Discovered Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Acceptance Inspection</td>
</tr>
<tr>
<td>N</td>
<td>AOAP results</td>
</tr>
<tr>
<td>J</td>
<td>Calibration</td>
</tr>
<tr>
<td>X</td>
<td>Daily/Preventive Maintenance Service (PMS)/PMS1 inspection</td>
</tr>
<tr>
<td>D</td>
<td>Depot level repair/overhaul/rebuild</td>
</tr>
<tr>
<td>P</td>
<td>Diagnostic test</td>
</tr>
<tr>
<td>G</td>
<td>Flight</td>
</tr>
<tr>
<td>B</td>
<td>Handling</td>
</tr>
<tr>
<td>Y</td>
<td>Intermediate inspection</td>
</tr>
<tr>
<td>L</td>
<td>Maintenance operational check</td>
</tr>
<tr>
<td>M</td>
<td>Maintenance test flight</td>
</tr>
<tr>
<td>Z</td>
<td>Periodic inspection</td>
</tr>
<tr>
<td>H</td>
<td>Phase or Progressive Phase Maintenance (PPM) inspection</td>
</tr>
<tr>
<td>T</td>
<td>Preflight inspection</td>
</tr>
<tr>
<td>V</td>
<td>Postflight inspection</td>
</tr>
<tr>
<td>R</td>
<td>Rearmament</td>
</tr>
<tr>
<td>S</td>
<td>Reconfiguration</td>
</tr>
<tr>
<td>Q</td>
<td>Servicing</td>
</tr>
<tr>
<td>O</td>
<td>Special inspection</td>
</tr>
<tr>
<td>E</td>
<td>Storage</td>
</tr>
<tr>
<td>U</td>
<td>Thru flight inspection</td>
</tr>
<tr>
<td>K</td>
<td>Unscheduled maintenance</td>
</tr>
</tbody>
</table>

Notes:
1. These codes will be used to record when the fault or failure was discovered.

Table 1–5
How Recognized Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aerodynamic/Vibration</td>
</tr>
<tr>
<td>B</td>
<td>Audio/Hearing</td>
</tr>
<tr>
<td>C</td>
<td>Standard cockpit instruments</td>
</tr>
<tr>
<td>D</td>
<td>Onboard test equipment</td>
</tr>
<tr>
<td>E</td>
<td>Ground support test equipment</td>
</tr>
<tr>
<td>G</td>
<td>Visual</td>
</tr>
<tr>
<td>H</td>
<td>Odor</td>
</tr>
<tr>
<td>K</td>
<td>Feel</td>
</tr>
<tr>
<td>M</td>
<td>Off aircraft maintenance (component repair)</td>
</tr>
<tr>
<td>O</td>
<td>Special inspection, scheduled maintenance</td>
</tr>
</tbody>
</table>

Notes:
1. These codes will be used to record how the fault was recognized.

Table 1–6
Malfunction Effect Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No malfunction</td>
</tr>
<tr>
<td>2</td>
<td>No effect</td>
</tr>
<tr>
<td>3</td>
<td>Partial failure</td>
</tr>
<tr>
<td>4</td>
<td>Reduced performance</td>
</tr>
<tr>
<td>5</td>
<td>Mission abort</td>
</tr>
<tr>
<td>6</td>
<td>Precautionary landing</td>
</tr>
<tr>
<td>7</td>
<td>Forced landing</td>
</tr>
<tr>
<td>8</td>
<td>Incident/accident</td>
</tr>
<tr>
<td>9</td>
<td>Off aircraft maintenance (component repair)</td>
</tr>
</tbody>
</table>

Notes:
1. These codes will be used to record how the malfunction affected the mission.

Table 1–7
System Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aircraft</td>
</tr>
<tr>
<td>W</td>
<td>Armament</td>
</tr>
<tr>
<td>E</td>
<td>Electronic</td>
</tr>
<tr>
<td>O</td>
<td>Other (for example, high speed hoist)</td>
</tr>
</tbody>
</table>

Notes:
1. These codes will be used to record the system affected when called for on maintenance forms and records.

Table 1–8
DA Form 2408-18 Frequency Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Aircraft hours</td>
</tr>
<tr>
<td>D</td>
<td>Days</td>
</tr>
<tr>
<td>M</td>
<td>Months</td>
</tr>
<tr>
<td>Y</td>
<td>Years</td>
</tr>
<tr>
<td>R</td>
<td>Rounds</td>
</tr>
<tr>
<td>F</td>
<td>Hot Section Factors</td>
</tr>
<tr>
<td>C</td>
<td>Cycles</td>
</tr>
<tr>
<td>S</td>
<td>Starts (Fixed wing aircraft)</td>
</tr>
<tr>
<td>A</td>
<td>Auxiliary Power Unit (APU) operating hours</td>
</tr>
<tr>
<td>P</td>
<td>APU starts</td>
</tr>
</tbody>
</table>

Table 1–9
Maintenance Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Replaced. This code will be used when an item (repair part, component, etc.) is removed and replaced concurrently (or later) by a like or an equal item (except for gun, see code X). For avionics, when the equivalent item changes the avionics system designation, use action codes "R" and "S" instead of action code "A."</td>
</tr>
<tr>
<td>B</td>
<td>Adjusted. This code will be used when tightening, adjusting, bleeding, rigging, or activating reset button switches, regulating, etc.</td>
</tr>
<tr>
<td>C</td>
<td>Repaired. This code will be used when a reparable item is repaired. This will include, but not be limited to, disassembly, cleaning related to repair action, inspection, adjustment, internal lubrication, replacement of integral parts, assemblies and subassemblies, and welding. Does not include overhaul/rebuild.</td>
</tr>
<tr>
<td>D</td>
<td>Manufacture/fabrication of repair parts. This code will be used when repair parts are manufactured or fabricated from stock. This will include but not be limited to such items as hydraulic tubes, lines and hoses, and noncritical airframe members and brackets.</td>
</tr>
<tr>
<td>E</td>
<td>Not used for aircraft.</td>
</tr>
</tbody>
</table>

20 DA PAM 738–751 • 15 March 1999
Table 1–9

Maintenance Action Codes—Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Initial Inspection. This code will be used when inspecting items to establish maintenance action(s) needed to return item to serviceable status.</td>
</tr>
<tr>
<td>G</td>
<td>Final Inspection. This code will be used when inspecting items to determine acceptability of maintenance accomplished.</td>
</tr>
<tr>
<td>H</td>
<td>MWO. This code will be used to identify the application of MWOs.</td>
</tr>
<tr>
<td>I</td>
<td>Corrosion removal/clean/wash.</td>
</tr>
<tr>
<td>J</td>
<td>Tested. This code will be used when performing diagnostic or mechanical tests that are used to measure the performance of an item against established serviceability/technical standards.</td>
</tr>
<tr>
<td>K</td>
<td>In process inspection.</td>
</tr>
<tr>
<td>L</td>
<td>Removed and Installed. This code will be used when an item is removed for any reason and the same item is reinstalled.</td>
</tr>
<tr>
<td>M</td>
<td>Checked NRTS. This code will be used when an item is checked or tested and it is determined to be "Not Reparable at this station." Local policy may prescribe use of NRTS codes in table 1-17.</td>
</tr>
<tr>
<td>N</td>
<td>Checked Not Reparable. This code will be used when an item is checked or tested and it is determined to be nonreparable. This code applies also for items beyond economic repair limitations.</td>
</tr>
<tr>
<td>O</td>
<td>Overhauled/Rebuilt/Remanufactured.</td>
</tr>
<tr>
<td>P</td>
<td>Checked Serviceable. This code will be used for items checked or tested and no repair is required. This code QMWO Removal. This code applies only if it is determined that a reported fault does not exist or cannot be duplicated.</td>
</tr>
<tr>
<td>Q</td>
<td>MWO Removal. This code will be used to identify the removal of a MWO as a result of cancellation of the MWO requirement.</td>
</tr>
<tr>
<td>R</td>
<td>Removed. This code will be used when an item is removed and only the removal time is to be accounted for.</td>
</tr>
<tr>
<td>S</td>
<td>Installed. This code will be used when an item is installed and only the installation time is to be accounted for.</td>
</tr>
<tr>
<td>T</td>
<td>SOF/ASAM/TB SOU/TB Compliance. This code will be used to identify the compliance with the instructions of a specifically cited SOF/ASAM/TB or SOU/TB.</td>
</tr>
<tr>
<td>U</td>
<td>Decontamination.</td>
</tr>
<tr>
<td>W</td>
<td>Hour Meter Change. This code will be used to indicate the replacement of an hour meter.</td>
</tr>
<tr>
<td>X</td>
<td>Gun Change. This code will be used to report the replacement of a gun.</td>
</tr>
<tr>
<td>Y</td>
<td>Special Mission Alteration (SMA), apply/applied.</td>
</tr>
<tr>
<td>1</td>
<td>Servicing Scheduled (aircraft only). This code will be used when servicing actions that include replenishment or removal of consumable items used during flight operations (such as fuel, oil, water, alcohol, hydraulic fluid, oxygen, air, nitrogen, ammunition, bombs, etc.) is accomplished at intervals specified in maintenance manuals and inspection checklists that apply.</td>
</tr>
<tr>
<td>2</td>
<td>Servicing unscheduled (aircraft only). This code will be used when servicing actions, which include replenishment or removal of consumable items used during flight operations (such as fuel, oil, water, alcohol, hydraulic fluid, oxygen, air, nitrogen, ammunition, etc.), are accomplished at unspecified intervals.</td>
</tr>
<tr>
<td>3</td>
<td>PMD, PMS or PMS1 (aircraft only). This code will be used to report accomplishment of the visual inspection portion of the inspection. Other action codes will be used for related corrective actions as they apply.</td>
</tr>
<tr>
<td>4</td>
<td>Maintenance test flight/Maintenance operational check (aircraft only).</td>
</tr>
<tr>
<td>5</td>
<td>Preventive Maintenance. Periodic, phase or PPM (aircraft only). This code will be used to report accomplishment of the visual inspection portion of the inspection. Other action codes will be used for related corrective actions as they apply.</td>
</tr>
<tr>
<td>6</td>
<td>Special Inspection (aircraft only). Use this code when a specific action or inspection called for is not otherwise covered. This code will be recorded for recording temporary storage inspections. This code will be used for the visual inspection effort only. Other action codes will be used for related corrective actions as they apply. This code will not be used instead of codes 3 or 5.</td>
</tr>
<tr>
<td>7</td>
<td>Ground Handling (aircraft only). Use this code for ground support actions such as towing, jacking, parking, removal or installation of ground safety pins, mooring, etc.</td>
</tr>
<tr>
<td>8</td>
<td>Maintenance action not able to be performed (SAMS Unique)</td>
</tr>
<tr>
<td>9</td>
<td>Modification by replacement</td>
</tr>
</tbody>
</table>

Notes:

1 These codes will be used to record maintenance actions taken on an item when completing DA Form 2407 (Maintenance Request) and other maintenance forms and records.

Table 1–10

Functional Group Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Airframe</td>
</tr>
<tr>
<td>03</td>
<td>Landing gear</td>
</tr>
<tr>
<td>04</td>
<td>Power plant installation</td>
</tr>
<tr>
<td>05</td>
<td>Rotor system</td>
</tr>
<tr>
<td>06</td>
<td>Drive system</td>
</tr>
<tr>
<td>07</td>
<td>Hydraulics/Pneudraulics</td>
</tr>
<tr>
<td>08</td>
<td>Instrument system</td>
</tr>
<tr>
<td>09</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>10</td>
<td>Fuel system</td>
</tr>
<tr>
<td>11</td>
<td>Flight control system</td>
</tr>
<tr>
<td>12</td>
<td>Utility system</td>
</tr>
<tr>
<td>13</td>
<td>Environmental control system</td>
</tr>
<tr>
<td>14</td>
<td>Hoists and winches</td>
</tr>
<tr>
<td>15</td>
<td>Auxiliary power plant</td>
</tr>
<tr>
<td>16</td>
<td>Mission equipment</td>
</tr>
<tr>
<td>17</td>
<td>Emergency equipment</td>
</tr>
<tr>
<td>19</td>
<td>Avionics</td>
</tr>
<tr>
<td>30</td>
<td>Armament sub system</td>
</tr>
<tr>
<td>31</td>
<td>Fire control sub system</td>
</tr>
<tr>
<td>32</td>
<td>Hellfire sub system</td>
</tr>
<tr>
<td>33</td>
<td>TADS (Target Acquisition Designation Sight) assembly</td>
</tr>
<tr>
<td>34</td>
<td>PNVS (Pilot Night Vision Sensor) assembly</td>
</tr>
<tr>
<td>35</td>
<td>Area weapons systems</td>
</tr>
<tr>
<td>36</td>
<td>Other weapons systems</td>
</tr>
<tr>
<td>37</td>
<td>Fire control/visor</td>
</tr>
<tr>
<td>38</td>
<td>Symbol generation</td>
</tr>
<tr>
<td>39</td>
<td>IHUDSS (Integrated Helmet and Display Sighting System)</td>
</tr>
<tr>
<td>52</td>
<td>Auto pilot system</td>
</tr>
<tr>
<td>76</td>
<td>Electronics countermeasures</td>
</tr>
<tr>
<td>80</td>
<td>Special tools</td>
</tr>
<tr>
<td>82</td>
<td>Flyaway items</td>
</tr>
<tr>
<td>83</td>
<td>Ground support items</td>
</tr>
</tbody>
</table>

Notes:

1 These codes will be used to record the functional group of the aircraft and subsystems, where the fault or maintenance action completed when called for on maintenance forms and records.

Table 1–11

Utilization Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Active Components (except as otherwise listed)</td>
</tr>
</tbody>
</table>

DA PAM 738–751 • 15 March 1999
Table 1-11
Utilization Codes—Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Depot Stock</td>
</tr>
<tr>
<td>2</td>
<td>Post supply activities</td>
</tr>
<tr>
<td>4</td>
<td>Operational readiness float (ORF)</td>
</tr>
<tr>
<td>5</td>
<td>Installation maintenance and service equipment</td>
</tr>
<tr>
<td>7</td>
<td>Army National Guard, except mobilization and training equipment sites (Mates)</td>
</tr>
<tr>
<td>8</td>
<td>Army National Guard (Mates)</td>
</tr>
<tr>
<td>9</td>
<td>Air Force National Guard units</td>
</tr>
<tr>
<td>A</td>
<td>Army Reserve units, except equipment pools</td>
</tr>
<tr>
<td>B</td>
<td>Army Reserve units, equipment pools</td>
</tr>
<tr>
<td>C</td>
<td>Air Force Reserve</td>
</tr>
<tr>
<td>D</td>
<td>Army ROTC</td>
</tr>
<tr>
<td>E</td>
<td>Air Force ROTC</td>
</tr>
<tr>
<td>G</td>
<td>Defense Atomic Support Agency</td>
</tr>
<tr>
<td>H</td>
<td>U.S. Army Intelligence and Security Command</td>
</tr>
<tr>
<td>J</td>
<td>Defense Communications Security Agency</td>
</tr>
<tr>
<td>K</td>
<td>U.S. Army Training and Doctrine Command</td>
</tr>
<tr>
<td>L</td>
<td>U.S. Army Test and Evaluation Command</td>
</tr>
<tr>
<td>M</td>
<td>Civilian support units</td>
</tr>
<tr>
<td>N</td>
<td>Prepositioned stock in Europe, except Prepositioned Materiel Configured to Unit Sets (POMCUS)</td>
</tr>
<tr>
<td>P</td>
<td>Depot installation equipment</td>
</tr>
<tr>
<td>Q</td>
<td>Equipment assigned to service schools and training centers</td>
</tr>
<tr>
<td>R</td>
<td>Military Assistance Program (MAP)</td>
</tr>
<tr>
<td>S</td>
<td>Overhaul facility, military</td>
</tr>
<tr>
<td>T</td>
<td>Overhaul facility, commercial</td>
</tr>
<tr>
<td>U</td>
<td>Manufacturing facility</td>
</tr>
<tr>
<td>X</td>
<td>Repair Cycle Float (RCF)</td>
</tr>
<tr>
<td>Y</td>
<td>POMCUS in Europe</td>
</tr>
</tbody>
</table>

Table 1-12
Time Conversion Codes

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Parts of hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1-6</td>
<td>0.1</td>
</tr>
<tr>
<td>7-12</td>
<td>0.2</td>
</tr>
<tr>
<td>13-18</td>
<td>0.3</td>
</tr>
<tr>
<td>19-24</td>
<td>0.4</td>
</tr>
<tr>
<td>25-30</td>
<td>0.5</td>
</tr>
<tr>
<td>31-36</td>
<td>0.6</td>
</tr>
<tr>
<td>37-42</td>
<td>0.7</td>
</tr>
<tr>
<td>43-48</td>
<td>0.8</td>
</tr>
<tr>
<td>49-54</td>
<td>0.9</td>
</tr>
<tr>
<td>55-60</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:
- Time called for in manhour, flight hour, component operating hours, etc. blocks of DA Forms contained in this document will be reported in hours and tenths of hours. When entering hours or tenths of hours on forms a zero should be entered on either side of the decimal; for example, 2.0 when entering full hours or 0.7 when entering tenths of hours.

Table 1-13
Equipment Loss Codes—Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Loss through mutilation, ie, cutting, crushing, melting, burning, alteration, etc., to prevent reuse for original intended purpose.</td>
</tr>
<tr>
<td>E</td>
<td>Loss due to disassembly of a reportable integrated set assembly.</td>
</tr>
<tr>
<td>F</td>
<td>Component/module or repair part formerly designated by TB 1-1500-341-01 as a tracked item that no longer requires tracking using DA Form 2410. Combat loss (abandoned, captured, or destroyed).</td>
</tr>
</tbody>
</table>

Table 1-14
Equipment Gain Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gain of new item to U.S. Army inventory. Limited to gains from new procurement/ manufacture. Includes new manufactured items with a later NSN or P/N on items already listed in TB 1-1500-341-01.</td>
</tr>
<tr>
<td>C</td>
<td>Gain of items from static displays, museums, or training aircraft (See TM 1-1500-328-23).</td>
</tr>
<tr>
<td>F</td>
<td>Gain of an individual reportable item as a result of disassembly of an integrated set/assembly.</td>
</tr>
<tr>
<td>Q</td>
<td>Reclaimed from DRMO or cannibalization point.</td>
</tr>
<tr>
<td>P</td>
<td>Combat gain (recaptured or recovered)</td>
</tr>
<tr>
<td>R</td>
<td>Received from other (non-Army) governments, departments, agencies, services or Security/MAP countries.</td>
</tr>
<tr>
<td>S</td>
<td>Identification gain, e.g., NSN, PN or serial number redesignated (change) resulting through an approved MWO, DMWR, engineering change or process, to include redesignations not involving maintenance.</td>
</tr>
<tr>
<td>T</td>
<td>Identification gain, integrated set assembly with new NSN; or a change of equipment serial number or registration number</td>
</tr>
<tr>
<td>U</td>
<td>To show the first DA Form 2410 reporting on items being added to TB 1-1500-341-01 by message or by publication revision or to show the first DA Form 2410 report on a used item requiring reporting that was never previously reported. Does not include items being manufactured with the same or later NSN or P/N and not yet inducted into the Army inventory. These items will reflect an “A” gain code when accepted.</td>
</tr>
</tbody>
</table>
Table 1–16
Type Maintenance Request Code (Type MNT Req CD) or Repair—Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Component Change. Data recorded by a customer unit upon change.</td>
</tr>
<tr>
<td>K</td>
<td>Oil-Analysis Recommendation. The maintenance request is being generated as the result of an oil-analysis laboratory recommendation.</td>
</tr>
</tbody>
</table>

Notes:
1 These codes are used to describe the maintenance action requested. These codes are applicable to DA Form 2407. (SAMS unique.)

Table 1–17
Work Request Status Codes (STA)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Awaiting initial inspection. Includes initial inspection, acceptance, and parts determination.</td>
</tr>
<tr>
<td>B*</td>
<td>In Shop.</td>
</tr>
<tr>
<td>C*</td>
<td>Awaiting Shop. The initial and acceptance inspections have been completed and parts are on hand.</td>
</tr>
<tr>
<td>D</td>
<td>Deferred. Equipment in use, awaiting scheduled maintenance (may or may not be awaiting parts) and not considered high priority in that equipment is operating but requires some maintenance or modification.</td>
</tr>
<tr>
<td>E</td>
<td>Awaiting Final Inspection.</td>
</tr>
<tr>
<td>F</td>
<td>Final Inspection Complete. Includes final inspection and work order/log book completion.</td>
</tr>
<tr>
<td>H</td>
<td>Awaiting Disposition. Awaiting disposition instructions from a higher source.</td>
</tr>
<tr>
<td>I*</td>
<td>Awaiting Shop while Awaiting Parts. Cannot be used if the item is Not Mission Capable (NMC) reportable. In Shop Awaiting Parts, Work Continues. When this code is used, the calculation for NMCS/NMCM will remain in NMCM. This code was designed for aircraft but may be used for other items requiring maintenance.</td>
</tr>
<tr>
<td>J*</td>
<td>In Shop.</td>
</tr>
<tr>
<td>K</td>
<td>Awaiting Parts (Not NMC). No further repair actions can be made because parts are not available in shop supply.</td>
</tr>
<tr>
<td>M*</td>
<td>Evacuated for Repair and Return. All items on the work request were evacuated to another maintenance activity for repair and return.</td>
</tr>
<tr>
<td>N</td>
<td>Item Checked and Found Serviceable. This code applies only if the reported fault does not exist, or can not be duplicated.</td>
</tr>
<tr>
<td>O*</td>
<td>Awaiting Evacuation.</td>
</tr>
<tr>
<td>P</td>
<td>Deadline Other Reasons. Grounded or dead lined for lack of facility, tools, test equipment or the completion of intra-shopwork request.</td>
</tr>
<tr>
<td>Q</td>
<td>Awaiting Estimated Cost of Damage (ECOD) Actions. Items awaiting release of quality control officer before repairs can be started.</td>
</tr>
<tr>
<td>R</td>
<td>Awaiting Pickup. Item has been repaired or appropriate action taken. Owning unit has been notified and item is a waiting pickup. Before code "R" can be used, the work request MUST be closed, using a code "S" through "Z" (minus code "U"). If item is inoperative, "R" stops support NMC time. NMC time is charged to the owning unit until it submits a code "U."</td>
</tr>
<tr>
<td>S</td>
<td>Closed. Completed this Maintenance Activity. Repairs have been completed by the support activity receiving the end item or component. Work request is closed.</td>
</tr>
<tr>
<td>T</td>
<td>Closed. Completed by Other Maintenance Activity. Repairs have been completed and returned by the evacuated activity to the support activity. Work request is closed.</td>
</tr>
</tbody>
</table>
Table 1–17
Work Request Status Codes (STA)—Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Picked Up (must be closed first).</td>
</tr>
<tr>
<td></td>
<td>a. At Unit Level—Closed the ORG WON. All related records on the Inoperative Equipment File will be closed. All inoperative time stops.</td>
</tr>
<tr>
<td></td>
<td>b. At AVIM level—Picked up by customer. The support work order number and all related direct support work orders will be deleted from SAMS-1 during the next weekly process.</td>
</tr>
<tr>
<td>V</td>
<td>Closed for Reason of Exchange (Float). Repairs have not been completed, however; work request closed by reason of exchange (maintenance float).</td>
</tr>
<tr>
<td>W</td>
<td>Closed. Nonreturnable. Work request closed by turn in of an item classified as uneconomically repairable or nonrepairable (classification).</td>
</tr>
<tr>
<td>X</td>
<td>Closed. Nonacceptable for Standards (Rejected). Work request is closed. It did not meet acceptable standards.</td>
</tr>
<tr>
<td>Z</td>
<td>Closed. Without Completion. Work request closed or cancelled without completion (example: initial inspection was not started).</td>
</tr>
<tr>
<td>1*</td>
<td>Awaiting NMC parts. No further repairs can be made because of lack of parts in shop supply. This code is only used for NMC reportable items.</td>
</tr>
<tr>
<td>7</td>
<td>Awaiting Float Transaction.</td>
</tr>
<tr>
<td>8</td>
<td>Rework Return to Shop. If work request is “U,” code 8 must be used before job is returned to working status.</td>
</tr>
<tr>
<td>9</td>
<td>Begin Intransit Time.</td>
</tr>
</tbody>
</table>

Notes:
1 These codes indicate the status of an individual work request as it progresses through maintenance shops. These codes are applicable to all SAMS forms having a "STA" block. (SAMS Unique)
2 Above status codes followed by an asterisk "**" can be used at the unit level.

Table 1–18
Part Source Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CONTROLLED EXCHANGE. This code will be used to indicate source data for controlled exchanged repair parts when completing DA Form 2407.</td>
</tr>
</tbody>
</table>

Table 1–19
The Metric System and Equivalents—Continued

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When you know</th>
<th>Multiply by</th>
<th>To find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.6</td>
<td>square</td>
<td>km²</td>
</tr>
<tr>
<td></td>
<td>acres</td>
<td>0.4</td>
<td>kilometers</td>
<td>ha</td>
</tr>
<tr>
<td></td>
<td>square meters</td>
<td>1.2</td>
<td>square yards</td>
<td>yd²</td>
</tr>
<tr>
<td></td>
<td>square yards</td>
<td>0.4</td>
<td>square miles</td>
<td>mi²</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
<td>2.5</td>
<td>acres</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10,000 M2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass (weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>lb</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsp</td>
</tr>
<tr>
<td>Tbsp</td>
</tr>
<tr>
<td>fl oz</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>pt</td>
</tr>
<tr>
<td>qt</td>
</tr>
<tr>
<td>gal</td>
</tr>
<tr>
<td>ft³</td>
</tr>
<tr>
<td>yd³</td>
</tr>
<tr>
<td>mi³</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>m³</td>
</tr>
<tr>
<td>m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (exact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F Fahrenheit</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>°C Celsius temperature</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When you know</th>
<th>Multiply by</th>
<th>To find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>6.5</td>
<td>square centimeters</td>
<td>cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.09</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.8</td>
<td>square meters</td>
<td>m²</td>
</tr>
</tbody>
</table>

Table 1–20
Aircraft Transfer Decision Table

<table>
<thead>
<tr>
<th>TRANSFER TO RECORDER TO REMOVE COPIES TO AMCOM (NOTE 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCOM DATAPLATE (NOTE 1)</td>
</tr>
<tr>
<td>Federal, No Flyable A/C Yes</td>
</tr>
<tr>
<td>State, No</td>
</tr>
<tr>
<td>County, Non-flyable A/C (NOTE 7)</td>
</tr>
<tr>
<td>Local Government FMS or MAP No (NOTE 7)</td>
</tr>
<tr>
<td>Destroyed Aircraft Yes (NOTE 7)</td>
</tr>
<tr>
<td>Transferred to DRMO excess or deteriorated aircraft (NOTE 2)</td>
</tr>
<tr>
<td>Destroyed Aircraft Yes</td>
</tr>
<tr>
<td>Transferred to DRMO excess or deteriorated aircraft (NOTE 2)</td>
</tr>
<tr>
<td>Army Museum within (NOTE 3)</td>
</tr>
</tbody>
</table>

Table 1–21
Static Display Yes (NOTE 3) |

Table 1–22
Copies to AMCOM (NOTE 1) |

Federal, Yes (NOTE 7) |

State, No |

County, No Flyable A/C (NOTE 7) |

Local Government FMS or MAP No (NOTE 7) |

Destroyed Aircraft Yes (NOTE 7) |

Transferred to DRMO excess or deteriorated aircraft (NOTE 2) |

Army Museum within (NOTE 3) |

Table 1–23
Static Display Yes (NOTE 3) |

Table 1–24
Aircraft Transfer Decision Table

<table>
<thead>
<tr>
<th>TRANSFER TO RECORDER TO REMOVE COPIES TO AMCOM (NOTE 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCOM DATAPLATE (NOTE 1)</td>
</tr>
<tr>
<td>Federal, No Flyable A/C Yes</td>
</tr>
<tr>
<td>State, No</td>
</tr>
<tr>
<td>County, Non-flyable A/C (NOTE 7)</td>
</tr>
<tr>
<td>Local Government FMS or MAP No (NOTE 7)</td>
</tr>
<tr>
<td>Destroyed Aircraft Yes (NOTE 7)</td>
</tr>
<tr>
<td>Transferred to DRMO excess or deteriorated aircraft (NOTE 2)</td>
</tr>
<tr>
<td>Destroyed Aircraft Yes</td>
</tr>
<tr>
<td>Transferred to DRMO excess or deteriorated aircraft (NOTE 2)</td>
</tr>
<tr>
<td>Army Museum within (NOTE 3)</td>
</tr>
</tbody>
</table>

Table 1–25
Static Display Yes (NOTE 3) |

Table 1–26
Copies to AMCOM (NOTE 1) |

Federal, Yes (NOTE 7) |

State, No |

County, No Flyable A/C (NOTE 7) |

Local Government FMS or MAP No (NOTE 7) |

Destroyed Aircraft Yes (NOTE 7) |

Transferred to DRMO excess or deteriorated aircraft (NOTE 2) |

Army Museum within (NOTE 3) |

Table 1–27
Static Display Yes (NOTE 3) |

Table 1–28
Aircraft Transfer Decision Table

<table>
<thead>
<tr>
<th>TRANSFER TO RECORDER TO REMOVE COPIES TO AMCOM (NOTE 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCOM DATAPLATE (NOTE 1)</td>
</tr>
<tr>
<td>Federal, No Flyable A/C Yes</td>
</tr>
<tr>
<td>State, No</td>
</tr>
<tr>
<td>County, Non-flyable A/C (NOTE 7)</td>
</tr>
<tr>
<td>Local Government FMS or MAP No (NOTE 7)</td>
</tr>
<tr>
<td>Destroyed Aircraft Yes (NOTE 7)</td>
</tr>
<tr>
<td>Transferred to DRMO excess or deteriorated aircraft (NOTE 2)</td>
</tr>
<tr>
<td>Destroyed Aircraft Yes</td>
</tr>
<tr>
<td>Transferred to DRMO excess or deteriorated aircraft (NOTE 2)</td>
</tr>
<tr>
<td>Army Museum within (NOTE 3)</td>
</tr>
</tbody>
</table>

Table 1–29
Static Display Yes (NOTE 3) |

Table 1–30
Copies to AMCOM (NOTE 1) |

Federal, Yes (NOTE 7) |

State, No |

County, No Flyable A/C (NOTE 7) |

Local Government FMS or MAP No (NOTE 7) |

Destroyed Aircraft Yes (NOTE 7) |

Transferred to DRMO excess or deteriorated aircraft (NOTE 2) |

Army Museum within (NOTE 3) |
Chapter 2
Aircraft Logbook Forms and Records

2–1. General-aircraft logbook forms and records

a. This chapter instructs in the use, general and special instructions, disposition, and how to fill out logbook forms and records for aircraft, aircraft training devices or simulators, and installed aviation-related mission equipment.

b. Aircraft logbook forms and records will be kept by all aviation units, organizations, and/or activities that operate, fly, and maintain aircraft and aviation-related mission equipment. These records are used to control operations of aircraft, aircraft training devices or simulators, maintenance trainer airframes, and installed aviation-related mission equipment. See appendix D for a list of forms and records to be maintained.

c. A “zero time closeout” may be completed at the discretion of the maintenance officer, but will be performed after completion of extensive maintenance, or a periodic/phase maintenance inspection requiring a general test flight. The closeout will be completed before the test flight. See subparagraph 2–9c(1)(e) and 2–10c(9)(b). A “zero time closeout” will be performed by ULLS-A and LAS users when the aircraft has not flown and a new Flight Pack has been generated.

d. When the aircraft is operated away from its home station, the closed out forms will stay in the logbook until the aircraft returns. During extended time away from the home station, the aircraft forms will be removed and filed in the local maintenance office. The forms will be delivered back to the home station upon completion of the exercise, TDY, or combat.

e. A 6-month file of logbook forms will be kept. The monthly file will start on the 16th of each month and end on the 15th of the following month. As each new month is added, the seventh month may be destroyed. If the aircraft does not fly in a given month, the file will be kept intact until the aircraft flies again. Always keep 6 months, plus the current month.

f. Authorized units with ADPE support can use automated or electronically produced forms as prescribed in subparagraph 1–6f.

2–2. Logbook Binder (NSN 7510–00–889–3494 (2 1/2 inch))

a. The logbook binder (fig 2–1) will be used to hold the DA forms listed in subparagraph 1–15c for the specific type aircraft or equipment.

b. The logbook binder has a plastic slot on the outside to hold the DA Form 2408–31, identifying the aircraft or other equipment to which the logbook belongs.

c. The logbook will remain with the aircraft or other aviation equipment when it is operated or flown, inspected, serviced, repaired, overhauled, modified, TDY, or on loan. Logbooks may remain with the aircraft when transferred (see para 1–16).

d. The Equipment Record Folder, NSN 7510–01–065–0166, will be used for aviation NVG historical records and may be used for other aviation associated equipment listed in appendix D.

2–3. DA Form 2408, Equipment Log Assembly

a. Purpose of the DA Form 2408 (fig 2–2). This form provides a reference for operational, mission, duty, flight condition symbols, aircraft condition status symbols, and maintenance codes to be used on DA Forms 2408–12, 2408–13, 2408–13–1, 2408–13–2, 2408–13–3, and other related maintenance forms.

b. Use. Provide information to assist air crew and maintenance personnel on filing out logbook, maintenance, and historical forms, records, and files. If a conflict exists between AR 95–1 and this pamphlet, the information in AR 95–1 takes precedence.

c. Disposition. This form is a permanent part of the logbook. When it gets soiled or damaged replace it with a new one.

2–4. DA Form 2408–31, Aircraft Identification Card

a. Purpose of the DA Form 2408–31 (fig 2–3). This form identifies a specific aircraft logbook to an aircraft, aircraft training device or simulator, or other aviation equipment.

b. Use. A DA Form 2408–31 goes in the outside front plastic slot of each aircraft logbook, containing operational and maintenance forms and records to show:

(1) The MDS of aircraft or other equipment.

(2) Serial number of aircraft or other equipment.

(3) Unit or organization to which the aircraft or equipment is assigned.

(4) Name of the crew chief or mechanic assigned to the aircraft or person responsible for maintenance of other equipment.

(5) Name of the supervisor that is responsible for the aircraft or other equipment.

c. Disposition. This form is a permanent part of the logbook. A new card will be made out when the information, on the card, changes or the card is no longer readable. If a new card is made out the old card will be thrown away.

2–5. DA Form 2408–4–1, Weapon Record Data

a. Purpose of the DA Form 2408–4–1 (fig 2–4). This form provides a record of rounds fired, maintenance actions, and component replacement during the service life of the armament systems installed on the aircraft. This information is important for crew and aircraft safety.

b. Use. The DA Form 2408–4–1 is used—
2–6. DA Form 2408–4–2, Weapon Sighting Data (OH-58D)

a. Purpose of the DA Form 2408–4–2 (fig 2–5). This form is used to record data constants and other weapon sighting information for the mast mounted sight (MMS) installed on the OH-58D helicopter.

b. Use. This form is used for OH-58D helicopters for the following:

(1) To provide the pilot, crewmember, and armament maintenance personnel a ready reference of computer data for proper operation of the MMS.

(2) To show the removal and replacement of component parts of the MMS system. When one or more of the MMS components listed on the form is removed and replaced with a different component the form will be updated with the new component data constant(s).

(3) As a ready reference of data constants and other sighting information during flight and maintenance operations.

c. General. A second copy of this form may be kept in the aircraft historical file. If a backup copy is kept, anytime an entry is made on the logbook copy, the same entry will be made on the backup copy in the historical file. The backup form kept in the historical file would provide data constants for reconstruction of a new form if the logbook copy becomes lost.

2–7. DA Form 2408–4–3, Weapon Sighting Data (AH-64A)

a. Purpose of the DA Form 2408–4–3 (fig 2–6). This form is used to record bore sight harmonization computer data and other weapon sighting information for armament sub system assemblies installed on AH-64A helicopters.

b. Use. This form is used for AH-64A helicopters for the following:

(1) To provide the pilot, crewmember, and armament maintenance personnel a ready reference of fire control computers (FCC) data for proper operation of armament systems.

(2) To show removal and replacement of FCC and air data processors. When the FCC or Air Data Processor, listed on the form, is removed and replaced with a different component update the form with the new components bore sight harmonization computer data.

(3) As a ready reference of data constants and other sighting information during flight and maintenance operations.

c. General. A second copy of this form may be kept in the aircraft historical file. If a backup copy is kept, anytime an entry is made on the logbook copy, the same entry will be made on the backup copy in the historical file. The backup form kept in the historical file would provide data constants for reconstruction of a new form if the logbook copy becomes lost.

d. Disposition. Keep the DA Form 2408–4–3 in the aircraft logbook until it becomes damaged, entries become obliterated, or all the lines in blocks 5, 8, and 9 are used and another entry is needed. Then make out a new form, per paragraph 1–7, and throw the damaged or filled up form away.
needed flight information for all crewmembers that were on the flight. The pilot will also enter operational data, such as landings, touchdown autorotations, engine starts, loads, cycles operated, hot section factor readings, rounds fired, and so forth. Upon landing after each flight, the pilot will read the engine monitor page displayed on the multifunction display (MFD) for HSF counts and enter the counts in block 6a, HSF, of the DA Form 2408–12.

(3) When an individual on flight status has performed flying duties in an aircraft not assigned to his or her unit or activity, a copy of the DA Form 2408–12 will be provided to that individual. The pilot in command of the flight will annotate the margin of the DA Form 2408–12 with a remark, “I certify that this is a true copy of the DA Form 2408–12,” and the date (dd mmm yy) of the flight. The signature of the pilot in command, and the date will be entered following the certification.

(4) A flight or series of flights, that take off before 2400 hours and lands after 2400 hours is credited to the date of takeoff. Enter the time it took for the flight in hours and tenths of an hour in the Flight Hour block. See DA Form 2408, Time Conversion Table, in the logbook or table 1–12 at the end of chapter 1.

(5) If more than one DA Form 2408–12 is used for the mission day, enter the totals in block 8 on the last page.

d. Disposition

(1) After the last flight of the mission day or before the first flight of the next mission day, closeout the DA Form 2408–12, by totaling the flight hours, landings, touchdown autorotations, APU starts, APU hours, hour meter hours, engine starts, landing gear cycles, and rounds fired in block 8. Enter these totals on the DA Form 2408–13 in the blocks that apply. Make out a new DA Form 2408–12. Remove the closed out DA Form 2408–12 from the aircraft logbook and send the closed out form through the maintenance office to the operations office. When the aircraft is operated away from its’ home station, the closed out forms will stay in the logbook until the aircraft returns.

(2) Operations will keep the DA Form 2408–12 for 3 months, then destroy it.

2–9. DA Form 2408–13, Aircraft Status Information Record

a. Purpose of the DA Form 2408–13 (fig 2–8). This form provides a record of aircraft and aviation associated equipment condition status and other aircraft maintenance information.

b. Use. This form is used for aircraft and aircraft training devices or simulators listed in appendix D for the following.

(1) To show the present status of the aircraft, aircraft training devices/simulators, maintenance trainer airframes, and mission related equipment aboard the aircraft.

(2) To show current hours, hours flown today, and total aircraft hours.

(3) To show number of landings and touchdown autorotations during the report period.

(4) To show current HSF counts readings today for the T703 engine installed in OH-58D helicopters.

(5) To sign off daily inspections.

(6) As a ready reference of the last 5 HIT checks when ULLS-A is implemented.

(7) To show when the next scheduled maintenance inspection, such as when the next phase inspection is due.

(8) To show operational hours and starts for the APU.

(9) To show the number of engine starts for multiengine fixed wing aircraft.

c. Special instructions.

(1) The crew chief or mechanic—

(a) Makes out a new DA Form 2408–13 after the last flight of the mission day or before the first flight of the next mission day. Note. On maintenance trainer airframes, make out a new DA Form 2408–13 after each major maintenance action.

(b) Perform a daily inspection or PMS when due, using the most current PDM or PMS CL for the type and model aircraft assigned. Enter all faults found during the inspection on DA Form 2408–13–1.

(c) Enter the correct status symbol for the aircraft and the aviation mission related equipment in block 10, SYSTEM STATUS block. There are fourteen spaces for system status symbols for aircraft or aircraft training devices/flight simulators, and seven spaces for installed mission related equipment for use during the mission day. If more spaces are needed during a mission day, start a new DA Form 2408–13–2.

(d) Closeout the DA Form 2408–13 after the last flight of the mission day, by entering the flight time, landings, touchdown autorotations, and other required information in the TODAY blocks. Add these to the CURRENT blocks, and put results in TOTAL blocks. Enter the HSF counts for the T703 engines from DA Form 2408–12, block 8, in the TOTAL block. When using the manual method of recordkeeping, make out a new DA Form 2408–13 and make sure the current data is correct. For units using ULLS-A, the new DA Form 2408–13 will be printed when the Flight Pack is generated by the ULLS-A program.

(e) When performing a “zero time closeout” enter “0” in the TODAY blocks for current aircraft hours, landings, touchdown autorotations, and other blocks that apply. Enter the total in the TOTAL blocks. When using the manual method of recordkeeping, make out a new DA Form 2408–13 and make sure the current data is correct. For units using ULLS-A, the new DA Form 2408–13 will be printed when the Flight Pack is generated by the ULLS-A program. A “zero time closeout” will be performed by ULLS-A user’s when the aircraft has not flown for a while and a new Flight Pack has been generated by the ULLS-A program without the aircraft being flown.

(2) The pilot—

(a) Checks the aircraft and installed aviation associated equipment condition status shown in the SYSTEM STATUS blocks. The SYSTEM STATUS block must show the condition status of the most serious uncorrected fault on the DA Form 2408–13–1, DA Form 2408–13–2, DA Form 2408–13–3, or the DA Form 2408–14–1.

(b) Checks the DA Form 2408–18 to see if any inspections, services, or replacements are due or overdue.

(c) Checks that fuel, oil, oxygen, and anti-icing tanks are serviced to be sure sufficient amounts remain to complete the assigned mission.

(d) Performs a preflight check/inspection, per TM-10CL, and enters all faults/remarks found on DA Form 2408–13–1.

(e) Enters the date (dd mmm yy), in the DATE block, of the first flight of the mission day, if the aircraft is safe to fly and can do the assigned mission.

(f) Performs a thru flight check/inspection per TM-10CL, after landing at any intermediate stop, and enters all faults/remarks on DA Form 2408–13–1.

(g) Performs a post flight check/inspection per TM-10CL, after the last flight of the mission day, and enters all faults/remarks on the DA Form 2408–13–1.

(3) After extensive maintenance or inspection that requires a test flight, the closed out forms will remain available (preferably in the unit maintenance or quality control office) for the flight or maintenance crew until the test flight is signed off.

(4) DA Forms 2408–13 received in the maintenance office will be checked against the previous DA Form 2408–13 to make sure that aircraft time, status, and other entries are correct.

(5) A DA Form 2408–13 showing current aircraft status will stay in the logbook of aircraft in administrative storage. A Form 2408–13, block 10, SYSTEM STATUS, must reflect the current condition status symbol for the most serious uncorrected fault/deficiency; unapplied directives, such as SOF messages, ASAMs, TBs, MWOs; component/module, accessories, or other items due or overdue replacement; or scheduled and special inspections due or overdue completion recorded on the current aircraft logbook forms.

(6) When the engine on a OH-58D helicopter is removed for replacement, the total HSF counts recorded in block 11, will be entered on the engine DA Form 2408–16, block 7, for example, “21 JAN 92, HSF counts is 1432, B. Brand, 53rd AVN CO, Fort Leavenworth, KS.”
The closed out DA Form 2408–13 will be removed from the logbook at the end of the mission day or before the first flight of the next day, or after a “zero time closeout” is performed. The closed out form will be attached to the Flight Pack and sent to the unit maintenance office.

The DA Forms 2408–13 will be filed in the 6-month file and disposed of per the instructions for the 6-month file.

2–10. DA Form 2408–13–1, Aircraft Inspection and Maintenance Record

a. Purpose of the DA Form 2408–13–1. This form has five major purposes (see fig 2–9). It provides a place to record aircraft and aviation associated equipment—

(1) Operational remarks and/or faults found during flight or operation, preflight, through flight, and post-flight inspections.

(2) Checks, services, scheduled or unscheduled maintenance inspections, MWO’s, SOF messages/ASAMs/TBs completed or uncompleted.

(3) Faults found including battle damage assessment and repair (BDAR): when faults were found, how faults were recognized, effect faults had on the operation or mission, and corrective actions taken to correct faults.

(4) Manhours (manpower requirement criteria (MARC), AR 570–2) it takes to do maintenance and quality control work, by military, civilian, and contract maintenance support personnel.

(5) Condition status symbols for aircraft, aviation associated equipment, including mission related equipment aboard aircraft. Used to update the AMASS portion of the ULLS-A program.

b. Use. DA Form 2408–13–1 is used by the aircraft crew chief, mechanic assigned, pilot, maintenance and quality control personnel, the unit commander and his or her designated representative during flight and maintenance operations of aircraft, aviation associated equipment, and components/modules to record—

(1) Faults and deficiencies found during ground, flight, or maintenance operations.

(2) Remarks related to flight and condition of the aircraft.

(3) Removal and replacement of repair parts, component/module, or assemblies that affect safety of flight of the aircraft.

(4) Accident/mishap damage, battle damage, or damage resulting from a natural phenomenon, such as wind, rain, water, and so on.

(5) Contamination or suspected contamination by nuclear, biological, or chemical agents.

(6) Scheduled, unscheduled, and/or special inspections, checks, and services due and completed.

(7) Condition status symbols for aircraft, aviation associated equipment, and mission related equipment aboard aircraft.

(8) Component/module, accessories, and other items due replacement at specific flying hours, operating hours, rounds fired, calendar time, starts, and so on.

(9) Uncorrected faults from DA Form 2408–13–3 and deferred faults from DA Form 2408–14–1.

c. General instructions. When a new fault/deficiency is entered on DA Form 2408–13–1, or a fault/deficiency has been corrected, check DA Form 2408–13 to see if the status needs to be changed. Whenever a fault or remark is entered in a Fault Information block, or corrective action has been entered in a Corrective Information block the person making the entry will enter his or her PID in the PID block, of the Fault Information block or the Corrective Information block.

(1) Instructions for the pilot.

(a) During preflight, through flight, and post flight inspections, enter all faults found or any remarks on the FAULT/REMARKS line, in the FAULT INFORMATION block. Faults and remarks, such as “FLT 1, Nav. Lights inop”, “FLT 2 OK”, and “Magnetic compass calibration due”, are examples of what will be entered on the FAULT/REMARK line.

(b) Test flights will not be numbered on DA Form 2408–13–1. If a maintenance test flight is required between operational (numbered) flights, the operational flight following the maintenance test flight will carry the next higher number. For example, Flt #1, Flt #2, Test Flight, Flt #4 and so on. When entering a remark, such as “Flt #1 OK,” only the DATE, REMARK, and PID need be entered in the Fault Information block.

(c) Only one fault/remark per Fault Information block is allowed. After entering a fault/remark, the pilot will enter the status symbol, that they feel is suitable for the fault, in the STATUS block, and complete all applicable sections of the Fault Information block.

(2) Instructions for the Crew Chief or Mechanic.

(a) The crew chief will prepare a new Flight Pack after the last flight of the mission day or before the first flight of the next mission day, and will prepare additional DA Forms 2408–13–1 as needed during the mission day.

(b) Enter all faults found during the PMD or PMS in the Fault Information block(s).

(c) When a fault is corrected the person making the correction will enter the corrective action on the ACTION line, and any other required information in the Correcting Information block.

(3) Recording directives. Record directives such as SOF messages, ASAMs, TBs, MWOs, or other one-time inspection messages that affect the condition status of aircraft, aviation associated equipment, and mission related equipment aboard the aircraft as follows:

(a) Enter the proper status symbol in the STATUS block in the Fault Information block.

(b) Enter the directive number and an abbreviated title on the FAULT/REMARK line of the Fault Information block. For example, “TB 1–1520–238–07, New Canopy Rem. Sys. Inst. for AH–64A Hel. not applied.”

(c) A quality control inspector will ensure compliance with SOF/ASAM/SOFU messages, TBs and other directives calling for a one-time inspection of the aircraft, components/modules, assemblies or repair parts. All SOF messages, TBs, and other directives calling for a one-time inspection of the aircraft and mission related equipment aboard the aircraft will be recorded on the DA Form 2408–15 per figure 4–3. Directives and application for serialized reportable components/modules installed on the aircraft, will be recorded on the DA Form 2408–5–1 per figure 4–2. When the directive is issued without instructions for entry on DA forms and records, or when a conflict arises between the directive instructions and this pamphlet, the policy and procedures in this pamphlet will be followed (see chap 1, para 1–6).

(d) When an ASAM, SOF message, or TB is issued and calls for a repeat or recurring maintenance inspection/action, the first maintenance inspection/action of an item will be recorded on the FAULT/REMARK line. The condition status symbol will be entered in the STATUS block in the Fault Information block. Make the following entry in the Fault Information block: “Recurring maint. action (ASAM, SOF, TB or other directive number).” In the Correcting Information, ACTION line, enter the phrase “First compliance done.” The date, manhours, and other information will be recorded in the Correcting Information block. The person making this entry will initial over the status symbol in the STATUS block. Then, if possible, the repeat/recurrent maintenance inspection/action may be entered on the DA Form 2408–18. For example: a repeat/recurrent maintenance inspection/action that will be done every 10 hours or 15 days could be entered on DA Form 2408–18, or an inspection/ action that is required before each flight would remain on the DA Form 2408–13–1.

(4) Recording maintenance inspection due. Record maintenance inspections due as follows:

(a) A red horizontal dash “_” will be entered in the STATUS block when the inspection becomes due, or when it is started early.

(b) A Red “X” will be entered in the STATUS block when a scheduled phase or periodic maintenance inspection is not completed when due by the flying hours called for in the -23 TM or other directives.

(c) A Red “X” will be entered in the STATUS block when a special or repeat/recurrent inspection was not completed by the flying hours, operating hours, rounds fired, starts, or calendar date called for in the -23 TM or other directives, plus the allowed extension in Section 2 of TM 1–1500–328–23.
(d) The type and number (if numbered) of the inspection will be entered on the Fault/Remark line, of the Fault Information block.

(5) Recording completion of maintenance inspections.
(a) When all scheduled inspection requirements, listed in the maintenance inspection checklist, and maintenance related actions that require a test flight, are entered in the checklist, the action word “completed,” or a phrase, such as “Phase 2 completed,” “Phase inspection completed,” “PMS completed,” “PMS2 completed,” “Inspection completed” on the ACTION line of the Correcting Information block. If you use one or more words describing the correcting information or action taken, it will not be considered in error. Complete all applicable portions of the Correcting Information block. If a maintenance test flight or MOC is needed after completion of the inspection enter the requirement in the Fault Information block.

(b) When the phased maintenance or periodic inspection checklist contains inspection requirements to be completed at 25, 50, 75, 100, or 125 hours, between the phase or periodic inspections, the pages containing the inspection requirements will be removed from the checklist after completion of the inspection requirements; for example, pages containing inspection requirements for the 25 hour, 50 hour, 75 hour, or so on, will be removed when the inspections are completed. The pages will be attached to the DA Form 2408–13–1 on which the inspection requirement was entered. Faults will not be entered on the checklist pages. Enter all faults on DA Form 2408–13–1 or 2408–13–3.

Note. When a PMD inspection is completed after the last flight of the mission day, the completion of the inspection is not required on the DA Form 2408–13–1. Record this inspection on the DA Form 2408–13, for the next mission day, per figure 2–8. However, when an aircraft is in flyable storage, the seven day PMD entry will be recorded on DA Form 2408–13–1. Enter a red dash “-” status symbol in the STATUS block, and “PMD Due” on the FAULT/REMARK line, of the Fault Information block. Complete all applicable portions of the Fault Information block. Upon completion, the PMD inspection will be signed off by completing all applicable portions of the Correcting Information block.

(6) Recording Replacement of Components/Modules and Accessories. When a component/module, accessory, or other items require replacement due by the number of flying hours, operating hours, rounds fired, starts, or calendar time, make entries on the DA Form 2408–13–1 as follows:

(a) Enter the proper status symbol in the STATUS block, of the Fault Information block. See paragraph 1–8 for the status symbol to use and paragraph 1–9 for clearing status symbols.

(b) Enter the name and type of reportable component/module, accessory, or other item due replacement on the FAULT/REMARK line, of the Fault Information block. For example, “Gearbox 42 degree due replacement.” Fill in all required information in the Fault Information block per figure 2–9.

(c) When a reportable component/module, accessory, or other item is replaced, always include the serial number (S/N) of the replacement item. Examples, “Gearbox 42 degree replaced with SNB132277,” “Gear box repl with S/N B132277,” “Repl 42 degree gearbox with S/N D132277,” or “Replaced with S/N B132277.” If you use these examples or other words describing the correcting information taken, it will not be considered in error.

(d) Make concurrent entries on other DA Forms, such as DA Form 2410, DA Form 2408–16, or DA Form 2408–16–1 at this time.

(7) Recording Maintenance Test Flights and Maintenance Operational Checks. The requirement for a maintenance test flight will only be entered on a DA Form 2408–13–1. When a maintenance test flight is required per the aircraft maintenance manual, or TM 1–1500–8–23 enter a red dash “-” status symbol in the STATUS block of the Fault Information block. On the FAULT/REMARK line enter the test flight requirement or reason(s) for the test flight. For example, “General test flight required for completion of Phase #1,” or “Limited test flight due for replacement of engine.” When a general test flight is needed, it is not necessary to enter every individual item requiring a test flight. An entry such as “General test flight required for completion of extensive maintenance.” or “General test flight required for completion of Phase #3.” is sufficient. When a limited test flight is needed, enter all the maintenance actions that require a test flight. Complete all applicable portions of the Fault Information block. When a limited test flight is completed, the word “Completed” or a phrase similar to “MTF completed,” “Test flight completed,” “MTF compl,” and so forth, will be entered on the ACTION line, of the Correcting Information block, followed by the signature of the test pilot. The remainder of the Correcting Information block will be completed per figure 2–9. The status symbol in the STATUS block will be initialed by the person completing the test flight. The test flight sheet will be attached to the DA Form 2408–13–1.

(a) If faults/deficiencies are discovered during the maintenance test flight, enter the fault/discrepancy in the next open Fault Information block. The test pilot will precede each fault or deficiency with “Test Flight,” and complete all applicable portions of the Fault Information block. The statement “Test flown, not released for flight,” is not needed. The original test flight entry will be used for additional test flights when further testing is needed. If the test flight can not be completed on that mission day, closeout the flight pack and carry forward all open entries.

(b) When a MOC is required and the MOC cannot be accomplished concurrently with the related maintenance actions, or the MOC is to be performed by an individual other than the mechanic who performed the corrective action, a MOC entry will be made in the Fault Information block. On the FAULT/REMARK line enter the requirement or reason for the MOC. Complete all required portions of the Fault Information block. When a MOC is performed after extensive maintenance, or periodic/phase maintenance inspection where a MOC of the complete aircraft is required, it is not necessary to enter each requirement. An entry such as “MOC due for completion of Phase #1” is sufficient. When the MOC is completed the word “Completed” or a phrase similar to “MOC completed” will be entered in the Correcting Information block. Complete all applicable portions of the Correcting Information block, and initial the status symbol.

(c) Maintenance work completed not needing an engine runup will be cleared and signed off by the person who did the MOC. Other minor maintenance actions, for example, changing light bulbs, radio checks, changing common hardware (not in flight controls) does not need a separate DA Form 2408–13–1 or DA Form 2408–13–3 entry for the MOC, as the test flight was the only action taken per the instruction. The MOC will complete all applicable portions of the Correcting Information block and initial the status symbol in the STATUS block. A MOC may be entered on the DA Form 2408–13–2 when the MOC is completed as part of the related maintenance actions; however, the MOC must be accomplished concurrently with the related maintenance action.

(8) Deferred Faults

(a) Corrective action may be delayed because of lack of repair parts, some other item of supply, or deferred maintenance. The supply requisition number or the maintenance request number will be printed in the DELAY block, of the Fault Information block, and the entry transferred to a DA Form 2408–14–1. The requisition number or maintenance request number will remain with the entry until the fault is corrected. When parts have been received, but would require aircraft or component disassembly to install, the fault may be delayed until the next phase inspection or extensive maintenance. The fault may be reentered to the DA Form 2408–14–1 with “Awaiting Phase,” “Awaiting PMS2,” or other similar remark as a reason for the delay. All information, from the Fault Information block, needed to complete the DA Form 2408–14–1 will be entered.

(b) When reentering a fault to the DA Form 2408–14–1, enter the phrase “Reentered to DA Form 2408–14–1” on the ACTION line, your PID in the PID block, and date in the Correcting Information block. The status symbol will not be initialed since the fault is only reentered to another form.
The decision to defer and reenter a fault to the DA Form 2408–14–1 will be made by the unit or activity commander, equal management or supervisor in contract support maintenance, or their designated representative.

(9) Flight Pack closeout (Manual recordkeeping).
 (a) The Flight Pack will be closed out and removed from the logbook at the end of the mission day or before the start of the next mission day.
 (b) A “zero time closeout” may be completed at the discretion of the maintenance officer. It must be performed after completion of extensive maintenance, or a periodic/phase maintenance inspection requiring a general test flight. The zero time closeout will be completed before the start of the test flight. All forms and records will be made available to the test flight crew and will not be forwarded to the maintenance office until the test flight crew has completed the review.
 (c) When a Flight Pack closeout is performed, all open faults will be carried forward to a DA Form 2408–13–1 in the new Flight Pack or reentered on a DA Form 2408–14–1. All information in the Fault Information block will be carried forward to the new Flight Pack. The person carrying forward the fault will enter “CF” on the ACTION line, of the Correcting Information block of the DA Form 2408–13–1 in the old Flight Pack, the current date in the DATE block, and his or her PID in the PID block.
 (d) When a Flight Pack is closed-out, and there is an open fault that has generated a DA Form 2408–13–2, the fault can be carried forward. Carry forward the open fault and remove the associated DA Form 2408–13–2 and put it in the new Flight Pack. The old Flight Pack will then have to have its pages renumbered.

(10) Special instructions for ULLS-A user’s.
 (a) The person entering the faults and corrective action into the ULLS-A data base, will initial the right and left margin of the DA Form 2408–13–1, next to each fault and corrective action after entry into the ULLS-A data base. The initials certify that each fault and corrective action has been entered into the data base. Faults and corrective actions may be entered into the ULLS-A data base at any time. Remarks will not be entered into the data base.
 (b) A new Flight Pack will be printed before each mission day. This is to be sure that all the current faults are in the log book. Each time a Flight Pack is printed, it is not necessary to print a new DA Form 2408–18.
 (c) DA Form 2408–13–1 interfaces with the AMSS portion of ULLS-A that computes aircraft readiness. AMSS replaces DA Forms 1352 and 1352–1. ULLS-A automatically triggers AMSS when a fault or deficiency assigned a “X” or a Circled “X” status symbol is entered into the ULLS-A data base. Related maintenance actions from the DA Form 2408–13–2 are not entered into the ULLS A data base. Because entries from the DA Form 2408–13–2 are not entered into the ULLS-A data base, the AMSS portion of the ULLS-A program will not operate when the fault entered on the DA Form 2408–13–2, block 7, is a diagonal “/” or a dash “—” status symbol and block 9 has an entry with a “X” status. Until this problem is resolved or DA Form 2408–13–2 is automated, use the following procedures:
 1. When a fault/deficiency with a diagonal “/” or a dash “—” status symbol requires related maintenance actions to correct, enter the fault/deficiency on a DA Form 2408–13–2, block 7, and complete all the other required blocks.
 2. As soon as a “X” status condition is entered in block 9, an entry will be made in the first open Fault Information block, on the DA Form 2408–13–1. Make an entry the same as the original fault, deficiency, or condition (that required the DA Form 2408–13–2) followed by “in process.” Complete the remaining portions of the Fault Information block by entering a “X” status symbol in the STATUS block, the correct system code in the SYS block, the date the status went to a “X” in the DATE block, the time of day that the status went to a “X” in the TIME block, the PID of the person making the entry in the PID block, and the current aircraft hours in the A/C HRS block. Complete the remaining portions of the Fault Information block according to the original fault, deficiency, or condition on the DA Form 2408–13–1. Do not sign off the original fault, deficiency, or condition until all corrective actions for the original fault are completed.

3. The Correcting Information block for the writeup with the “X” status symbol will not be signed off until corrective action for the fault/deficiency is completed. When the corrective action is completed, enter the corrective maintenance action in the ACTION block, the PID of the individual completing the action on the PID line, and “0.1” on the HRS line. Add the PID of the inspector who inspected the corrective action on the TIMP line and “0.1” on TI MANHOURS line.

4. The Correcting Information block for the original writeup will be completed per paragraph 2–10. The total manhours and TI manhours it took to complete the corrective action and inspection, will be entered in the CORRECTING INFORMATION block of the original writeup.

d. Disposition. The closed out Flight Pack will be sent to the unit or activity maintenance office. All completed DA Forms 2408–13–1 that were filled out during maintenance operations will be reviewed for accuracy and neatness, and cross-checked with related historical forms, records, and files. The forms are part of the Flight Pack, and are filed in the 6-month file. They are kept for 6 flying months, plus the current month, then destroyed.

2–11. DA Forms 2408–13–2, Related Maintenance Actions Record

b. Use. To record related maintenance actions that are necessary when clearing faults/deficiencies and inspections that are entered on the DA Forms 2408–13–1 and 2408–13–3. Entries will be concise, with as few entries as possible to remain safe and ensure proper maintenance procedures are followed. This form is also used to show the condition status of the fault/deficiency or inspections on the DA Forms 2408–13–1 and 2408–13–3, and the status of the related maintenance action in the FAULT block.

(1) Only one major fault from DA Form 2408–13–1 or 2408–13–3, will be entered on each DA Form 2408–13–2, block 7 (FAULT). Use one or more DA Form 2408–13–2 to record related maintenance actions needed to correct the fault/deficiency or inspection.

Note. When a fault requires only one related maintenance action to correct it, units using the manual recordkeeping method may enter, on the DA Form 2408–13–1 or 2408–13–3, that one related maintenance action. If more than one related maintenance action is required to correct a fault, the related maintenance actions must be entered on a DA Form 2408–13–2 prepared for the fault. Related maintenance actions will not be entered on DA Form 2408–13–1 or 2408–13–3 in units participating in ULLS-A, or using the logbook module of LAS.

(2) Maintenance manhours are recorded for each related maintenance task, for each person doing the work (in hours and tenths of an hour). This requirement does not apply to units using the manual recordkeeping system.

c. General instructions.

(1) The DA Form 2408–13–2 will be made out by the crew chief, maintenance personnel working on the aircraft, or intermediate and depot support personnel.

(2) The crew chief, mechanic, or the person doing maintenance work to clear major faults/deficiencies with a Red “X,” circled Red “X,” Red dash “—,” or Red diagonal “/” recorded on the DA Form 2408–13–1 or DA Form 2408–13–3 will list related maintenance task that need to be done on the DA Form 2408–13–2, block 9 (FAULTS).

(3) Red dash “—” status symbol entries may be entered on the DA Form 2408–13–2, when the action is required by the TM-23 maintenance manual to correct the fault entered in block 7, such as rigging check, inlet guide vane opening check, bleed band closure check, and so on, and can be completed concurrently with the repair action.
When these actions are required to be performed after the fault in block 7 is corrected, the check must be entered on the DA Form 2408–13–1. For example, a rigging check required after replacement/installation of a flight control may be entered on the DA Form 2408–13–2. Retorquing the main rotor retaining nut after 5 hours of operation cannot be entered on the DA Form 2408–13–2 and must be entered on the DA Form 2408–13–1.

(4) All related maintenance actions recorded on the DA Form 2408–13–2 will show corrective action and clearing of status symbols per paragraph 1–9, and figures 2–10 and 2–11.

(5) Because related maintenance actions are not faults and are done to clear faults/deficiencies, they will never be carried forward to any other form or record. Any maintenance actions, that do not constitute a grounding condition, remaining on the DA Form 2408–13–2 after the fault, entered in block 7, has been corrected will be reentered on the DA Form 2408–13–1 as a fault. When reentering a fault to the DA Form 2408–13–1, enter the phrase “Reentered to DA Form 2408–13–1” in block 10 and enter your PID in block 11. Complete the Fault Information block on the DA Form 2408–13–1 per the instructions for initial fault entry. The status symbol in block 8 will not be initialed since the fault is only reentered to another form.

(6) When the fault entered in block 7 has not been corrected at the time of Flight Pack closeout, remove the DA Form 2408–13–2 listing the related maintenance actions for that fault from the Flight Pack and insert this form in the new Flight Pack. The DA Form 2408–13–2 listing the related maintenance actions for that fault will remain with the DA Form 2408–13–1 on which the uncorrected fault is listed. Change the page numbers of the old Flight Pack after removing the DA Form 2408–13–2.

d. Special instructions.

(1) The total maintenance manhours used to do related maintenance actions on the DA Form 2408–13–2 will be added to the manhours, in hours and tenths, that it took to correct the related fault listed on the DA Form 2408–13–1 or DA Form 2408–13–3 (ULLS-A Users only).

(2) While doing related maintenance actions listed on DA Form 2408–13–2 you may find additional faults on the aircraft, component/module, or assembly, that are not related to the fault listed on the DA Form 2408–13–1 or DA Form 2408–13–3. The new faults will be entered on the DA Form 2408–13–1 or DA Form 2408–13–3 as separate faults.

(3) This form will remain filed in the aircraft logbook with the corresponding DA Form 2408–13–1 or 2408–13–3 as part of the Flight Pack.

(4) Maintenance test flights will not be recorded on a DA Form 2408–13–2, but will be recorded on the DA Form 2408–13–1.

(5) When a MOC is needed for completion of related maintenance actions, the MOC may be entered on the DA Form 2408–13–2 if the MOC can be completed concurrently with the related maintenance actions.

(6) Related maintenance actions will not be entered in the ULLS-A data base.

(7) ULLS-A users will not enter special inspections listed on the DA Form 2408–18 to a DA Form 2408–13–2. Record the accomplishment of special inspections listed on the DA Form 2408–18 on DA Form 2408–13–1. The automated programs update the DA Form 2408–18 when the completion of the inspection is entered from the DA Form 2408–13–1.

(8) Manual recordkeeping units may list special inspections on the DA Form 2408–13–2. To help cut down on some of the excessive forms in the log book, if there are several special inspections that need to be done at one time, they can be listed on the DA Form 2408–13–2. Make an entry, such as “25-hour inspections due,” or “50-hour inspection due” on the DA Form 2408–13–1 and then list all the special inspections on the DA Form 2408–13–2.

e. Disposition. The completed DA Form 2408–13–2 is part of the Flight Pack, along with its corresponding DA Form 2408–13–1 or DA Form 2408–13–3 and becomes part of the 6-month file.

(1) Maintenance supervisors will check the completed DA Form 2408–13–2 for accuracy, and that all entries agree with the related fault listed on the DA Form 2408–13–1 or DA Form 2408–13–3.

(2) Technical inspectors will inspect the completed DA Form 2408–13–2 for incorrect entries and to make sure that related maintenance actions are properly cleared per paragraph 1–9 before forms are placed in the 6-month file.

2–12. DA Form 2408–14–1. Uncorrected Fault Record (Aircraft)

a. Purpose of the DA Form 2408–14–1. This form provides a record of uncorrected and deferred faults on aircraft, aviation associated equipment, and mission related equipment aboard the aircraft (fig 2–12).

b. Use.

(1) To record uncorrected and deferred faults and the reason for deferral, from the DA Forms 2408–13–1 and 2408–13–3.

(2) The maintenance unit or activity commander, equal management or supervisor in the contract support maintenance activity, or his or her designated representative will determine when a fault will be reentered to the DA Form 2408–14–1. However, faults with a status symbol of Red “X” or circled Red “X” will not be entered on this form. A red dash “–” status symbol may be entered on this form when it is needed to defer the application of a normal MWO or a nonemergency SOF message/ASAM/TB. Otherwise, red dash “–” status symbols will not be entered on this form.

Note. Categories A, B, and maintenance trainer aircraft assigned to the United States Army Aviation Logistics Schools may, at the discretion of the school Commandant, enter faults with status symbols of Red “X” and circled Red “X” on the DA Form 2408–14–1.

(3) Uncleared related maintenance actions recorded on DA Form 2408–13–2 will not be entered on a DA Form 2408–14–1.

c. General instructions.

(1) The DA Form 2408–14–1 will be completed by the crew chief, mechanic assigned to the aircraft, or personnel assigned to a higher level maintenance activity when the first entry is made on the form.

(2) Commanders or their designated representatives will approve fault entries made on the DA Form 2408–14–1.

(3) The crew chief, mechanic, or person doing maintenance work to clear a fault listed on the DA Form 2408–14–1 will reenter the fault to the DA Form 2408–13–1 and complete block 9 of the DA Form 2408–14–1.

(4) If a status symbol is initialed in error, enter a remark in the margin of the form stating that the status was initialed in error. Precede the remark with the date, and sign your name after the remark.

(5) Units using ULLS-A will print a new DA Form 2408–14–1 any time a fault from a DA Form 2408–13–1 or 2408–13–3 is deferred and entered in the data base. An entry will be made in the margin of the old form, stating that a new form was printed, the date, and PID of the individual adding the new form to the logbook. Attach the old DA Form 2408–14–1 to the current Flight Pack.

d. Disposition. When the form is filled and all entries have been reentered to a DA Form 2408–13–1 place the old DA Form 2408–14–1 in the 6-month file. The form will be destroyed with the 6-month file.

2–13. DA Form 2408–18, Equipment Inspection List

a. Purpose of the DA Form 2408–18. This form provides a ready reference list of all inspections, services, checks, and replacements listed in the Special Inspections section of the aircraft maintenance manual, TM-23, that are not done during scheduled maintenance inspections and are not recorded on other forms and records (fig 2–13).

b. Use. To maintain—

(1) A list of inspections, services, checks, and replacements to be accomplished, on aviation equipment, at intervals not compatible with scheduled preventive maintenance inspection intervals. For example, if an aircraft has a 150-hour phase inspection interval, an inspection completed at 25-hour intervals is not compatible with the phase maintenance inspection interval. A special inspection with a
150-hour frequency would be compatible with the phase maintenance inspection interval.

(2) A list of inspections, services, checks, and replacements that becomes due at two or more of the following frequencies: calendar time, flying hours, actual operating hours, engine/APU starts, cycles operated, and so forth. For example, a PMS is done every 10 flying hours or 14 days, whichever comes first.

(3) A record of components/modules and accessories that are to be inspected or replaced on a calendar time basis.

(4) A list of directed interim recurring inspections, services, checks, or replacements until they appear in a scheduled maintenance inspection check list (TM-23, CL, PMS, PE, Phase). When the inspection, service, check, or replacement is included in a maintenance inspection check list, line out the DA Form 2408–18 entry. Over the lined out entry, write in the date of the preventive maintenance TM change.

c. Disposition. Keep the DA Form 2408–18 in the aircraft logbook. When the aircraft is transferred within the Army, this form will go with the aircraft. When the form becomes illegible, mutilated or all entries are lined out, make a new form, and remove the old form from the logbook. Retain in the aircraft for 6-month file.
Figure 2-1. Sample Logbook Binder

SIZE: 2 1/2" x 8" x 10" NSN 7510-00-889-3494

THIS RECORD IS A DEPARTMENT OF ARMY CONTROLLED ITEM AND MUST BE SAFEGUARDED AGAINST LOSS AND DAMAGE. IN THE EVENT OF LOSS, SEE DA PAM 738-751.
SYMBOLS AND CODES TO BE USED ON AIRCRAFT OPERATIONAL AND MAINTENANCE FORMS

<table>
<thead>
<tr>
<th>STATUS SYMBOLS</th>
<th>WHEN DISCOVERED CODES</th>
<th>HOW RECOGNIZED CODES</th>
<th>DUTY SYMBOLS</th>
</tr>
</thead>
</table>
| X = RED X. Shows that a deficiency exists and the aircraft is unsafe for flight. | W Acceptance Inspection
N AOAP Results
J Calibration
P Daily/PMS Inspection
D Depot Level Repair
C Flight
B Handling
Y Intermediate Inspection
L Maintenance Oper Check
M Maintenance Test Flight
Z Periodic Inspection
H Phase/PPM Inspection
T Preflight Inspection
V Postflight Inspection
R Rework
S Reconfiguration
Q Servicing
O Special Inspection
E Storage
U Thru Flight Inspection
K Unscheduled Maintenance | A Aerodynamic/Vibration
B Audio/Hearing
C Std Cockpit Instruments
D Onboard Test Equip
F Ground Spt Test Equip
G Visual
H Odor
K Feel
M Off Act Maint
O Special Inap | AO Aerial Observer
CE Crew Chief, Flight Engineer
CP Copilot
FI Flt Engineer Instructor
IE Instrument Flight Examiner
IP Instructor Pilot
ME Maintenance Test Flight Evaluator
MO Flight Surgeon or other Medical Personnel
MP Maintenance Test Pilot
NCT Nonrated Crew Trainer
OR Aircraft Maintenance Personnel, Technical Observer, Fire Fighter, Aerial Photographer, Gunner, or duties requiring flight.
PC Pilot in Command
PI Pilot
SI Standardization Flight Engineer Instructor
SP Standardization Instructor Pilot
UT Unit Trainer
XP Experimental Test Pilot |
| = CIRCLED RED X. Indicates a deficiency. The aircraft may be flown under specific limits as directed by higher authority or as directed locally until corrective action is taken. |
| \ = RED DASH. Shows that an inspection, service, calibration, including HIT checks, TEAC's and MOC's or test flight is required. It also shows that a normal MWO, SOF or TB is due or overdue. |
| / = RED DIAGONAL. Indicated an unsatisfactory condition exists on the aircraft that is not urgent or dangerous enough to ground the aircraft. |

LAST NAME INITIAL

Shows that a completely satisfactory condition exists.

CIRCLED RED N, RED B, RED C

The red letter N (Nuclear), B (Biological), or C (Chemical) inside a red circle shows that the aircraft has been or may have been contaminated.

MALFUNCTION EFFECT CODES

1. No Malfunction
2. No Effect
3. Partial Failure
4. Reduced Performance
5. Mission Abort
6. Precautionary Landing
7. Forced Landing
8. Incident/Accident
9. Off Act Maint

MISSION SYMBOLS

T Training Flight
C Combat Mission
S Service Mission
D Imminent Danger
F Maintenance Test flight
A Acceptance Test Flight
X Experimental Test Flight

SYSTEM CODES

A Aircraft
W Armament
E Electronic
O Other

FLIGHT CONDITION SYMBOLS

AA Air to Air
D Day
DS Day Flight Using Night Systems
DG Day Goggles
N Night
NG Night Vision Goggles
H Hood
TH Terrain
NS Night Systems
W Weather

DA FORM 2408, OCT 97
DA FORM 2408, NOV 91, IS OBSOLETE

For use of this form see DA PAM 738-751; the proponent agency is DCSLOG

Figure 2-2A. Sample of an Equipment Log Assembly (DA Form 2408) (Illustration #1, Front)
ACTION CODES

These codes will be used to record maintenance actions performed on aircraft when correcting faults on the DA Form 2408-13-1. Only a listing is provided. See DA Pamphlet 738-751 for detailed instructions of each code.

- A REPLACED
- B ADJUSTED
- C REPAIRED
- D MANUFACTURE/FABRICATION
- F INITIAL INSPECTION
- G FINAL INSPECTION
- H MWO APPLIED
- J TESTED
- K IN PROCESS INSPECTION
- L REMOVED AND REINSTALLED
- M CHECKED NRTS
- N CHECKED - NOT REPAIRABLE
- O OVERHAULED/REBUILT/REMANUFACTURED
- P CHECKED - SERVICEABLE
- Q MWO REMOVAL
- R REMOVED
- S INSTALLED
- T SOF/ASAM/TB SOU/TB COMPLIANCE
- U DECONTAMINATION
- W HOUR METER CHANGE
- X GUN CHANGE
- Y SPECIAL MISSION ALTERATION APPLY/APPLIED
- 1 SERVICING-SCHEDULED
- 2 SERVICING-UNSCHEDULED
- 3 PMD/PMS/PMS-1
- 4 MAINTENANCE TEST FLIGHT/MOC
- 5 PERIODIC/PHASE/PPM INSPECTION
- 6 SPECIAL INSPECTION
- 7 GROUND HANDLING
- 8 SAMS UNIQUE CODE
- 9 MODIFICATION BY REPLACEMENT

FUNCTIONAL GROUP CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Airframe</td>
</tr>
<tr>
<td>03</td>
<td>Landing Gear</td>
</tr>
<tr>
<td>04</td>
<td>Power Plant Installation</td>
</tr>
<tr>
<td>05</td>
<td>Rotor System</td>
</tr>
<tr>
<td>06</td>
<td>Drive System</td>
</tr>
<tr>
<td>07</td>
<td>Hydraulics/Pneumatics</td>
</tr>
<tr>
<td>08</td>
<td>Instrument System</td>
</tr>
<tr>
<td>09</td>
<td>Electrical Installation</td>
</tr>
<tr>
<td>10</td>
<td>Fuel System</td>
</tr>
<tr>
<td>11</td>
<td>Flight Control System</td>
</tr>
<tr>
<td>12</td>
<td>Utility System</td>
</tr>
<tr>
<td>13</td>
<td>Environmental Control System</td>
</tr>
<tr>
<td>14</td>
<td>Hoists and Winches</td>
</tr>
<tr>
<td>15</td>
<td>Auxiliary Power Plant</td>
</tr>
<tr>
<td>16</td>
<td>Mission Equipment</td>
</tr>
<tr>
<td>17</td>
<td>Emergency Equipment</td>
</tr>
<tr>
<td>19</td>
<td>Avionics</td>
</tr>
<tr>
<td>30</td>
<td>Armament Sub System</td>
</tr>
<tr>
<td>31</td>
<td>Fire Control Sub System</td>
</tr>
<tr>
<td>32</td>
<td>Hellfire Sub System</td>
</tr>
<tr>
<td>33</td>
<td>TADS Assembly</td>
</tr>
<tr>
<td>34</td>
<td>PNVS Assembly</td>
</tr>
<tr>
<td>35</td>
<td>Area Weapon System</td>
</tr>
<tr>
<td>36</td>
<td>Other Weapon Systems</td>
</tr>
<tr>
<td>37</td>
<td>Fire Control/RADAR</td>
</tr>
<tr>
<td>38</td>
<td>Symbol Generation</td>
</tr>
<tr>
<td>39</td>
<td>IHADDS</td>
</tr>
<tr>
<td>52</td>
<td>Auto Pilot System</td>
</tr>
<tr>
<td>76</td>
<td>Electronic Countermeasures</td>
</tr>
<tr>
<td>80</td>
<td>Special Tools</td>
</tr>
<tr>
<td>82</td>
<td>Flyaway Items</td>
</tr>
<tr>
<td>83</td>
<td>Ground Support Items</td>
</tr>
</tbody>
</table>

NOTE: All functional group codes do not apply to all models.

TIME CONVERSION TABLE

<table>
<thead>
<tr>
<th>MINUTES</th>
<th>PARTS OF HOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1-6</td>
<td>0.1</td>
</tr>
<tr>
<td>7-12</td>
<td>0.2</td>
</tr>
<tr>
<td>13-18</td>
<td>0.3</td>
</tr>
<tr>
<td>19-24</td>
<td>0.4</td>
</tr>
<tr>
<td>25-30</td>
<td>0.5</td>
</tr>
<tr>
<td>31-36</td>
<td>0.6</td>
</tr>
<tr>
<td>37-42</td>
<td>0.7</td>
</tr>
<tr>
<td>43-48</td>
<td>0.8</td>
</tr>
<tr>
<td>49-54</td>
<td>0.9</td>
</tr>
<tr>
<td>55-60</td>
<td>1.0</td>
</tr>
</tbody>
</table>

REVERSE OF DA FORM 2408, OCT 97

Figure 2-2B. Sample of a Equipment Log Assembly (DA Form 2408) (Illustration #2, Reverse)
Legend for Figure 2-3:
Preparation instructions (by block number and title) for completing DA Form 2408–31, Aircraft Identification Card

1. MDS. Enter the mission, design, and series for the aircraft or other aviation equipment.

2. AIRCRAFT SERIAL NO. Enter the serial number for the aircraft (seven numeric digits) or other aviation equipment.

3. UNIT. Enter the name of the unit or organization the aircraft or other aviation equipment is assigned to.

4. CREW CHIEF’S NAME. Enter the rank and name of the crew chief or mechanic assigned to the aircraft or other aviation equipment. Leave blank when used to mark the historical binder.

5. SUPERVISOR’S NAME. Enter the rank and name of the supervisor (Section Sergeant, Platoon Sergeant, or Platoon Leader) or person responsible for the aircraft or other aviation equipment. Leave blank when used to mark the historical binder.

Figure 2-3. Sample of a completed DA Form 2408–31 (Aircraft Identification Card)
Legend for Figure 2-4:

Preparation instructions (by block number and title) for completing a DA Form 2408–4–1, Weapon Record Data

1. END ITEM. Enter "HELICOPTER."

2. SERIAL NUMBER. Enter the aircraft serial number (seven numeric digits).

3. MODEL. Enter the mission, design, series of the aircraft.

4. UNIT. Enter the name of the organization owning the aircraft.

5. WEAPON DATA.
 a. DATE FIRED. Enter the date (dd mmm yy) of firing.
 Leave blank when making an entry to document maintenance actions.
 b. CANNON MODEL. Enter the model number of the cannon.
 c. SERIAL NO CANNON TUBE. Enter the serial number of the cannon tube.
 d. ROUNDS FIRED. Enter the number of rounds fired for the mission day. Leave blank when making an entry for replacement or maintenance inspection.
 e. CUMULATIVE ROUNDS. Add the rounds fired today to the previous cumulative rounds. Enter the total cumulative rounds fired when the maintenance action is completed.
 f. REMARKS. Entries will be made when a component

<table>
<thead>
<tr>
<th>DATE FIRED</th>
<th>CANNON MODEL</th>
<th>SERIAL NO CANNON TUBE</th>
<th>ROUNDS FIRED</th>
<th>CUMULATIVE ROUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Jul 89</td>
<td>30MM</td>
<td>L4973</td>
<td>550</td>
<td>14,500</td>
</tr>
<tr>
<td>24 Jul 89</td>
<td>30MM</td>
<td>L4973</td>
<td>500</td>
<td>15,000</td>
</tr>
<tr>
<td>27 Jul 89</td>
<td>30MM</td>
<td>L4973</td>
<td>15,000</td>
<td>Replaced 30MM gun shear pin</td>
</tr>
<tr>
<td>14 Aug 89</td>
<td>30MM</td>
<td>L4973</td>
<td>1,500</td>
<td>16,500</td>
</tr>
<tr>
<td>17 Sep 89</td>
<td>30MM</td>
<td>L4973</td>
<td>750</td>
<td>17,250</td>
</tr>
<tr>
<td>21 Oct 89</td>
<td>30MM</td>
<td>L4973</td>
<td>17,250</td>
<td>Replaced carrier drive motor</td>
</tr>
<tr>
<td>22 Oct 89</td>
<td>30MM</td>
<td>L4973</td>
<td>150</td>
<td>17,400</td>
</tr>
<tr>
<td>23 Oct 89</td>
<td>30MM</td>
<td>L4973</td>
<td>500</td>
<td>17,900</td>
</tr>
</tbody>
</table>
of the weapon is replaced. Other remarks significant to maintenance, or the operation of the weapon will be entered.

g. NAME OR PID. The person making the entry will enter his or her PID for routine rounds fired, cumulative rounds fired, and any maintenance actions performed. AVIM level armament personnel who complete maintenance actions will put their UIC under the PID.

Table: DA Form 2408-4-2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HELICOPTER</td>
<td>9100561</td>
<td>OH-58D</td>
<td>WAYTAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend for Figure 2-5:

Preparation instructions (by block number and title) for completion of a DA Form 2408-4-2, Weapon Sighting Data (OH-58D)

1. **END ITEM:** "Helicopter" has been preprinted.

2. **SERIAL NUMBER:** Enter the serial number (seven numerical digits) of the end item.

3. **MODEL:** "OH-58D" has been preprinted.

4. **UIC:** Enter the unit identification code of the unit or activity that owns the end item.

5. **DATE:** Enter the date (dd mmm yy) of the data constants reading. Space for five entries (a through e). When components, in block 6, are removed and replaced enter the date of the new data constants readings on the next open line, and line out the previous entry.

6. **COMPONENT:** Components have been preprinted.

7. **DATA CONSTANTS:** Enter the data constants information (black lead pencil), exactly as it appears on each component data plate. As components are removed and replaced erase this entry, and enter the data constants for the new component.
8. **MMS COMPONENTS SERIAL NUMBER**: Enter the serial number of the Mast Mounted Sight subsystems components. Space for five entries (a through e). When components, in block 6, are removed and replaced enter the new MMS component serial numbers on the next open line, and line out the previous entry.

9. **SIGNATURE OR PID**: The person making the data constants entry will enter his or her PID.

![Table](image)

Legend for Figure 2-6: Preparation instructions (by block numbers and title) for completion of a DA Form 2408–4–3, Weapon Sighting Data (AH-64A)

- **Note**: The data in blocks 5 through 17 may change. Use pencil for entries so they can be erased and changed when components are removed and replaced. The use of transparent tape is authorized and must be of the type you can print on with a pencil.

1. **END ITEM**: "Helicopter" has been preprinted.

2. **SERIAL NUMBER**: Enter the serial number (seven numerical digits) of the aircraft.

3. **MODEL**: "AH-64A" has been preprinted.
4. **UIC**: Enter the unit identification code of the unit or activity that owns the end item.

5. **FCC S/N**: Enter the Fire Control Computer serial number. If the FCC is removed and replaced, erase the old serial number and enter the new serial number.

6. **AIR DATA PROC S/N**: Enter the Air Data Processor serial number. If the Air Data Processor is removed and replaced, erase the old serial number and enter the new serial number.

7. **DATE**: Enter the date (dd mmm yy) when the Air Data Processor thumb wheel setting was entered. If the Air Data Processor is removed and replaced, erase the old date and enter the date the new thumb wheel setting was entered.

8. **THUMBWHEEL SETTING**: Enter the assigned thumb wheel setting. If the Air Data Processor is removed and replaced, erase the old assigned thumb wheel setting and enter the new thumb wheel setting.

9. **TADS CORRECTORS-MR**.
 a. **DATE**: Enter date (dd mmm yy) when target acquisition designation sight (TADS) Correctors Milliradian (MR) sighting data listed below was entered.
 b. **LEFT EL=**: Enter the Left Elevation (EL) TADS Corrector-MR data. **LEFT AZ=**: Enter the Left Azimuth (AZ) TADS Corrector-MR data.
 c. **FWD EL=**: Enter the Forward (FWD) EL TADS Corrector-MR data. **FWD AZ=**: Enter the FWD AZ TADS Corrector-MR data.
 d. **RIGHT EL=**: Enter the Right EL TADS Corrector-MR data. **RIGHT AZ=**: Enter the Right AZ TADS Corrector-MR data.

10. **TADS CORRECTORS-MR**. Use this block after Equipment Change Proposal (ECP) 1248 and 1251 are applied to the aircraft.
 a. **DATE**: Enter date (dd mmm yy) when TADS Correctors Milliradian (MR) sighting data listed below was entered.
 b. **RATE PITCH=**: Enter the Rate Pitch Corrector-MR data.
 c. **YAW=**: Enter the Yaw Corrector-MR data.

11. **BST EGI-MR**. Use this block after ECP 1198 is applied to the aircraft.
 a. **DATE**: Enter date (dd mmm yy) the BST EGI Correctors-MR data was entered.
 b. **AZ=**: Enter the Azimuth (AZ) Corrector-MR data.
 c. **EL=**: Enter the Elevation Corrector-MR data.

12. **GUN CORRECTORS-MR**.
 a. **DATE**: Enter date (dd mmm yy) when Gun Correctors-MR Sighting Data listed below was entered.
 b. **FWD EL**: Enter the FWD EL Gun Correctors-MR data. **AZ**: Enter the FWD AZ Gun Correctors-MR data.
 c. **ROLL LT**: Enter the Roll LT Gun Correctors-MR data. **RT**: Enter the Roll RT Gun Correctors-MR data.

13. **PNVS CORRECTORS-MR**.
 a. **DATE**: Enter date (dd mmm yy) when pilot night vision sensor (PNVS) corrector-MR sighting data was entered.
 b. **EL=**: Enter the EL PNVS Corrector-MR data. **AZ=**: Enter the AZ PNVS Corrector-MR data.

14. **PYLON 1 CORRECTORS-MR**.
 a. **DATE**: Enter the date (dd mmm yy) when Pylon 1 Correctors-MR data was entered.
 b. **EL**: Enter the EL Pylon 1 Correctors-MR data. **AZ**: Enter the AZ Pylon 1 Correctors-MR data.
 c. **ROLL**: Enter the Roll Pylon 1 Correctors-MR data.

15. **PYLON 2 CORRECTORS-MR**.
 a. **DATE**: Enter the date (dd mmm yy) when Pylon 2 Correctors-MR data was entered.
 b. **EL**: Enter the EL Pylon 2 Correctors-MR data. **AZ**: Enter the AZ Pylon 2 Correctors-MR data.
 c. **ROLL**: Enter the Roll Pylon 2 Correctors-MR data.

16. **PYLON 3 CORRECTORS-MR**.
 a. **DATE**: Enter the date (dd mmm yy) when Pylon 3 Correctors-MR data was entered.
 b. **EL**: Enter the EL Pylon 3 Correctors-MR data. **AZ**: Enter the AZ Pylon 3 Correctors-MR data.
 c. **ROLL**: Enter the Roll Pylon 3 Correctors-MR data.

17. **PYLON 4 CORRECTORS-MR**.
 a. **DATE**: Enter the date (dd mmm yy) when Pylon 4 Correctors-MR data was entered.
 b. **EL**: Enter the EL Pylon 4 Correctors-MR data. **AZ**: Enter the AZ Pylon 4 Correctors-MR data.
 c. **ROLL**: Enter the Roll Pylon 4 Correctors-MR data.
Legend for Figure 2-7A:
Preparation instructions (by block number and title) for completing a DA Form 2408–12, Army Aviator’s Flight Record (Crew chief/mechanic)

1. DATE. Leave blank, the pilot will enter the date at the beginning of the first flight of the mission day.

2. SERIAL NUMBER. Enter the aircraft serial number (seven numeric digits).

3. MODEL. Enter the aircraft mission design series.

4. ORGANIZATION. Enter the unit or activity the aircraft is assigned to.

5. STATION. Enter the aircraft’s home station.

6. Blocks a. FLIGHT DATA, b. PERSONNEL DATA, and c. DUTY SYMBOL/FLIGHT SYMBOL/HOURS/SEAT will be filled out by the pilot.

7. SERVICING DATA. At the start of the mission day, the first line will show the grade of fuel and oil, and the results of the in-tank checks. The crew chief or mechanic will enter their PID in the "SERVICED BY" block and enter the location of the aircraft where the inspection was performed in the "LOCATION" block. The person servicing the aircraft will enter the following—

FUEL ADDED (GALLONS). The person servicing the aircraft will enter the total quantity of fuel, in gallons, added at one time on the next open line. If fuel was removed, place a minus "−" sign in front of the quantity removed. If no fuel was added or removed, leave blank.

Figure 2-7A. Sample of a completed DA Form 2408–12 (Army Aviators Flight Record) (Illustration #1)
Note. The person who serviced the aircraft or supervised the servicing will make sure the DA Form 2408–12 entries match the amount and grade of fuel entries recorded on the servicing issue slip.

GRADE. Enter the grade of fuel used to service the aircraft.

IN TANKS. Enter the total quantity, in gallons, of fuel in the tanks after servicing. If the aircraft is not serviced, estimate the amount of fuel aboard the aircraft.

OIL 1. Enter the amount of oil, in quarts, used to service the No. 1 engine. If oil was removed place a minus "-" sign in front of the quantity. If none, leave blank.

GRADE. Enter the grade of oil used to service the No. 1 engine. If none, leave blank.

OIL 2. Enter the amount of oil, in quarts, used to service the No. 2 engine. If oil was removed place a minus "-" sign in front of the quantity. If none, leave blank.

GRADE. Enter the grade of oil used to service the No. 2 engine. If none, leave blank.

APU. Enter the amount of oil, in pints, used to service the APU. If oil was removed place a minus "-" sign in front of the quantity. If none, leave blank.

GRADE. Enter the grade of oil used to service the APU. If none, leave blank.

OXYGEN. Enter the amount of oxygen, in pounds per square inch (PSI), used to service the system. If none, leave blank.

Note. Servicing entries are needed when an Oxygen System is placed aboard the aircraft.

ANTI-ICING. Enter the amount of anti-icing fluid, in gallons, used to service the system. If anti-icing fluid was removed place a minus "-" sign in front of the quantity. If none, leave blank.

SERVICED BY. Enter the PID of the person doing the servicing, or the person who supervised the servicing on the same line with the service. If no servicing was needed, the person who made the "TOTAL IN-TANKS" check will enter his or her PID in this column.

LOCATION. Enter the location where the aircraft was serviced. The Federal Aviation Administration (FAA) Identifier in CONUS or the International Civil Aviation Organization (ICAO) Identifier for areas located OCONUS may be used. (For example, HOP for Campbell AAF, KY, HLR for Hood AAF, TX, GRK for Gray AAF, TX, EDMA for Augsburg Heliport, GE, RKSL for Seoul AAF Korea.) If an identifier is not assigned, enter the location where the aircraft was serviced. Authorized abbreviations are acceptable in this block.

TOTALS. Enter totals of all consumables used for the mission day.

Note. Line one of the servicing data is the "TOTAL IN-TANKS" at the start of the mission day, and will not be added to the totals at the end of the mission day.

Backside DA Form 2408–12 (fig 2–7, illustration no 2)

6. Blocks a. FLIGHT DATA, b. PERSONNEL DATA, and c. DUTY SYMBOL/FLIGHT SYMBOL/HOURS/SEAT will be filled out by the pilot.

8. TOTALS. If more than one DA Form 2408–12 is used for the mission day, enter the totals, in block 8, on the last page. Units using ULLS-A or LAS will enter, whenever possible, all flight data into the data base at the end of each mission day.

FLIGHT HRS. Enter the total flying hours, in hours and tenths, for the mission day. Reenter total time to the DA Form 2408–13, block 11, CURRENT AIRCRAFT HOURS.

LANDINGS: STD. AUTO. Enter the total number of landings and touchdown auto rotations made for the mission day. Reenter total landings and touchdown autorotations to the DA Form 2408–13, block 11, LANDINGS.

APU: STARTS. HOURS. Enter the total APU starts and hours, in hours and tenths, for the mission day. Reenter total APU starts/hours to the DA Form 2408–13, block 7, APU HISTORY STARTS and HOURS TODAY. If the APU has a start/hour meter use the total starts shown on the start/hour meter at the end of the mission day. Reenter total starts to DA Form 2408–13, block 7, APU HISTORY STARTS TOTAL.

HOUR METER HOURS. If the APU has an hour meter, enter the operating hours on the meter at the end of the mission day. Reenter total APU hours to the DA Form 2408–13, block 7, APU HISTORY HR METER TOTAL.

STARTS: #1 #2 For multiengine fixed wing aircraft enter the number of engine starts for the number 1 and number 2 engines. Engine starts while the aircraft is on the ground, or in the air will be recorded for each flight, when required by the applicable aircraft maintenance manual. Reenter the number of engine starts to the DA Form 2408–13, block 9, ENGINE STARTS.

CYCLES. For fixed wing aircraft enter the total number of times the landing gear was cycled up and down for the mission day. Reenter total cycles to the DA Form 2408–13, block 11, FLIGHT DATA, HSF/ CYCLES.

HSF. For the OH-58D helicopter enter the total Hot Section Factor (HSF) counts for the mission day. Reenter total HSF counts to the DA Form 2408–13, block 11, FLIGHT DATA, on the Today line in HSF/CYCLES column.

ROUNDS. 7.62: 20MM: 30MM: 40MM: Rocket: TOW: HELLFIRE: Enter the total number of rounds fired for each weapon system at the end of the mission day. Reenter the totals to the DA Form 2408–4–1 as required.

Note. For AH-64A Helicopters only, reenter the total
number of 30MM cannon rounds fired today to the DA Form 2408–13, block 8, ROUNDS FIRED AIRFRAME TODAY.

<table>
<thead>
<tr>
<th>TIME</th>
<th>FROM</th>
<th>TO</th>
<th>ROUNDS</th>
<th>CONFIG</th>
<th>LOADS: INTERNAL</th>
<th>EXTERNAL</th>
<th>PASSENGERS</th>
<th>CYC</th>
<th>HSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:10</td>
<td></td>
<td></td>
<td>7.62</td>
<td>20mm</td>
<td>30mm</td>
<td>40mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATUS</th>
<th>FROM</th>
<th>TO</th>
<th>ROUNDS</th>
<th>CONFIG</th>
<th>LOADS: INTERNAL</th>
<th>EXTERNAL</th>
<th>PASSENGERS</th>
<th>CYC</th>
<th>HSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Aug 93</td>
<td></td>
<td></td>
<td>7.62</td>
<td>20mm</td>
<td>30mm</td>
<td>40mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 2-7B. Sample of a completed DA Form 2408–12 (Army Aviators Flight Record) (Illustration #2)

Legend for Figure 2-7B:

Preparation instructions (by block number and title) for completing DA Form 2408–12, Army Aviators Flight Record (Pilot)

Page of . Enter the total number (black lead pencil) of pages of DA Forms 2408–12 used for the current mission day.

1. **DATE.** Enter the date (dd mmm yy) at the beginning of the mission day.

 Note. 2 through 5. These blocks will, normally, be filled in by the crew chief. Pilot will check the blocks for accuracy and completeness. The pilot will complete these blocks when multiple pages of DA Forms 2408–12 are needed to complete the mission day. Refer to the crew chief’s 2408–12 instructions.

6.a. **FLIGHT DATA.** Enter the number of the flight (For example, if it is the first flight of the mission day enter a 1 here).

 Note. The FAA identifier in CONUS or the ICAO identifier for areas OCONUS may be used instead of the airfield and place in the FROM and TO blocks.

FROM. Enter the airfield or place that you flew from. The word "LOCAL" may be used in this block for flights within the local flying area.

TO. Enter any intermediate stops during the flight (will be left blank if "LOCAL" was used in the FROM section).
LDG: STD AUTO. Enter the total number of standard landings, and touchdown auto rotations made during this flight. For example, if you landed three times and two of the landings were touchdown auto rotations, your entry would be "1" standard landing and "2" touchdown auto rotations. The number of touchdown auto rotations may exceed the number of standard landings.

HIT CHECK NO. 2 ENGINE. Record the HIT check deviation from the established baseline for No. 2 Engine (first flight of the mission day). If it does not apply, leave blank.

HIT CHECK NO. 1 ENGINE. Record the HIT check deviation from the established baseline for No. 1 Engine (first flight of the mission day). If it does not apply, leave blank.

APU. STARTS. HOURS. Enter the number of starts for the APU, if required by the TM-23 and/or TB 1–1500–341–01. For APUs without an hour meter, enter the number rounds fired from each weapon system for this flight. When a block is not present for the type of weapon installed on the aircraft, line out the title on an unused block, and enter the weapon type and number of round fired. If none, or it does not apply leave blank.

HIT CHECK NO. 2 ENGINE. Record the HIT check deviation from the established baseline for No. 2 Engine (first flight of the mission day). If it does not apply, leave blank.

APU. STARTS. HOURS. Enter the number of starts for the APU, if required by the TM-23 and/or TB 1–1500–341–01. For APUs without an hour meter, enter the number rounds fired from each weapon system for this flight. When a block is not present for the type of weapon installed on the aircraft, line out the title on an unused block, and enter the weapon type and number of round fired. If none, or it does not apply leave blank.

HIT CHECK NO. 2 ENGINE. Record the HIT check deviation from the established baseline for No. 2 Engine (first flight of the mission day). If it does not apply, leave blank.

APU. STARTS. HOURS. Enter the number of starts for the APU, if required by the TM-23 and/or TB 1–1500–341–01. For APUs without an hour meter, enter the number rounds fired from each weapon system for this flight. When a block is not present for the type of weapon installed on the aircraft, line out the title on an unused block, and enter the weapon type and number of round fired. If none, or it does not apply leave blank.

HIT CHECK NO. 2 ENGINE. Record the HIT check deviation from the established baseline for No. 2 Engine (first flight of the mission day). If it does not apply, leave blank.

APU. STARTS. HOURS. Enter the number of starts for the APU, if required by the TM-23 and/or TB 1–1500–341–01. For APUs without an hour meter, enter the number rounds fired from each weapon system for this flight. When a block is not present for the type of weapon installed on the aircraft, line out the title on an unused block, and enter the weapon type and number of round fired. If none, or it does not apply leave blank.

HIT CHECK NO. 2 ENGINE. Record the HIT check deviation from the established baseline for No. 2 Engine (first flight of the mission day). If it does not apply, leave blank.
must be initialed by the pilot in command. Enter any other information needed locally.

7. SERVICING DATA. Entries normally will be made by the crew chief according to figure 2–7, and the entries will be checked by the pilot in command.

BACK SIDE OF DA FORM 2408–12 (fig 2–7, illustration 2)

6. FLIGHT DATA. Pilots' entries are the same as on the front side, except there is no requirement for a HIT check.

8. TOTALS. The person closing out the form, normally the crew chief or assigned mechanic will fill in the Totals in each block that applies per previous instructions.
Legend for Figure 2-8B:

Preparation instructions (by block title) for completing a DA Form 2408–13, Aircraft Status Information Record

DATE. The pilot will enter the date (dd mmm yy) for the first flight of the mission day.

NUMBER OF PAGES IN FLIGHT PACK. Enter the total number of pages (black lead pencil) in the Flight Pack (DA Forms 2408–13–1, 2408–13–2, and 2408–13–3). This entry will change when a DA Form 2408–13–1, 2408–13–2 or 2408–13–3 is added to the Flight Pack.

1. AIRCRAFT SERIAL NUMBER. Enter the aircraft serial number (seven numerics, no dashes). Computer generated for ULLS-A/LAS users.

2. MODEL. Enter the aircraft Mission Design Series. Computer generated for ULLS-A/LAS users.

3. UIC. Enter the unit identification code of the unit or activity owning the aircraft. Computer generated for ULLS-A/LAS users.

4. STATION. Enter the aircraft’s home station. Computer generated for ULLS-A/LAS users.

5. NAME OF TEAM/MECH. Enter the name of the assigned crew chief or mechanic.

6. ENGINE HIT READINGS.

Note. Leave these blocks blank when using the manual method of recordkeeping. Computer generated when using ULLS-A/LAS.

DATE. Dates of the last five HIT readings.
NO 1. Last five HIT readings for NO 1 engine.

NO 2. Last five HIT readings for NO 2 engine.

7. APU HISTORY.

HOURS, CURRENT. Applies to aircraft without an hour meter installed. Enter the total APU operating hours, in hours and tenths, from the last mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

HOURS, TODAY. Enter the APU operating hours, in hours and tenths, for the current mission day. Get this information from the backside of the current DA Form 2408–12, block 8, TOTALS, APU: HOURS.

HOURS, TOTAL. Add the CURRENT and TODAY operating hours for the total operating hours.

STARTS, CURRENT. Enter the total APU Starts from the last mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

STARTS, TODAY. Enter the number of APU starts for the current mission day. Get this information from the backside of the current DA Form 2408–12, block 8, TOTALS, APU: STARTS. If APU starts are shown on a Start/Hour Meter, leave this block blank.

STARTS, TOTAL. Add the CURRENT and TODAY starts for the total starts. If starts are shown on a Start/Hour Meter enter the number of starts on the meter, or from the backside of the current DA Form 2408–12, block 8, TOTALS, APU: STARTS.

HR METER, CURRENT. Applies to aircraft with an hour meter installed. Enter the total APU hour meter reading. Get the information from the last mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

HR METER, TOTAL. Enter the APU hour meter reading. Get this information from the backside of the current DA Form 2408–12, block 8, TOTALS, HOUR METER HOURS.

8. ROUNDS FIRED AIRFRAME. For AH-64A helicopters, all others leave blank.

CURRENT. Enter the total rounds fired from the 30MM cannon(s) presently and previously installed in the aircraft. Get this information from the last mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

TODAY. Enter the number of rounds fired from the 30MM cannon installed. Get this information from the backside of the current DA Form 2408–12, block 8, TOTALS, ROUNDS, 30MM.

TOTAL. Add the CURRENT and TODAY rounds fired for the total rounds fired.

9. ENGINE STARTS

NO 1, CURRENT. Enter the total number 1 engine starts from the last mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

NO 1, TODAY. Enter the total number 1 engine starts for the current mission day. Get this information from the backside of the current DA Form 2408–12, block 8, TOTALS, STARTS #1.

NO 1, TOTAL. Add the CURRENT and TODAY engine starts for the total number 1 engine starts.

NO 2, CURRENT. Enter the total number 2 engine starts from the last mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

NO 2, TODAY. Enter the total number 2 engine starts for the current mission day. Get this information from the backside of the current DA Form 2408–12, block 8, TOTALS, STARTS #2.

NO 2, TOTAL. Add the CURRENT and TODAY engine starts for the total number 2 engine starts.

10. SYSTEM STATUS. In these boxes enter the status symbols, for the most serious uncorrected faults for aircraft, and mission related systems listed in the Fault Information block on the DA Form 2408–13–1, DA Form 2408–13–2, DA Form 2408–13–3, and the DA Form 2408–14–1 starting in the top left box. When there are no faults on the aircraft or mission related systems, the mechanic or crew chief will enter their last name initial. If a fault is corrected, or a new fault is added, and the status changes, enter the new status symbol in the next open box to the right (for aircraft, there are 14 boxes that can be used). When all boxes are used, make out another DA Form 2408–13 and enter the status symbol in the top left box. Once you have entered a status symbol in any column in the SYSTEM STATUS block, you cannot erase, initial over, or change it. Record any status changes during the mission day in the next open box to the right. Clear any incorrect entries as shown in paragraph 1–8.

ACFT. Enter the current condition status symbol for the aircraft starting in the top left box. Computer generated for users of ULLS-A/LAS.

ARM. Enter the current status symbol for mission related armament systems starting in the left box. Computer generated for users of ULLS-A/LAS.

ELECT. Enter the current status symbol for mission related electronic equipment, such as, radar, camera, infrared, and so on, starting in the left box. Computer generated for users of ULLS-A/LAS.

OTHER. Enter the current status symbol for any other mission related aviation associated equipment, such as, rescue hoist starting in the left box. Computer generated for users of ULLS-A/LAS.

11. FLIGHT DATA.

AIRCRAFT HOURS

CURRENT. Enter the current total aircraft operating
time, in hours and tenths. This time can be found on the previous mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

TODAY. Enter the aircraft flying time, in hours and tenths, for Today’s mission. Get this time from the backside of the DA Form 2408–12, block 8, TOTALS, FLIGHT HRS.

TOTAL. Add the CURRENT and TODAY time for the total time, in hours and tenths.

LANDINGS, STD AUTO.

CURRENT. Enter the total standard landings and touchdown autorotations since the first day of the reporting period. Landings and autorotations can be found on the previous mission day DA Form 2408–13. Computer generated for users of the ULLS-A/LAS.

TODAY. Enter the standard landings and touchdown autorotations accomplished today. Get this information from the backside of the DA Form 2408–12, block 8, TOTALS, LANDINGS: STD, AUTO.

TOTAL. Add the CURRENT to the TODAY for the total landings and autorotations. If this form is for the last day of the report period, do not reenter the total landings and touchdown auto rotations to a new DA Form 2408–13.

Note. Before the first flight of a new 1352 Reporting Period, line out the CURRENT Landings and enter “0.” DO NOT zero the landings if the aircraft TM-23 requires component replacement or inspections based on total cumulative landings.

HSF/CYCLES.

CURRENT. For fixed wing aircraft with retractable landing gear, enter the total cycles for the landing gear. For OH-58 aircraft enter the total HSF counts. Cycles or HSF counts can be found on the previous mission day DA Form 2408–13. Computer generated for users of ULLS-A/LAS.

TODAY. For fixed wing aircraft with retractable landing gear enter the total number of times the landing gear was cycled today. Get this information from the backside of the DA Form 2408–12, block 8, TOTALS, CYCLES. Do not enter any HSF counts on this line.

TOTAL. For fixed wing aircraft with retractable landing gear add the CURRENT to the TODAY for total cycles. For the OH-58D helicopter enter the mission day’s HSF counts on this line. Get this count from the backside of the DA Form 2408–12, block 8, TOTALS, HSF.

Note. Compare the HSF counts in this block to the readings in the CURRENT Block to ensure proper operation of the multifunction display. When an engine is replaced, enter the total HSF counts on the DA Form 2408–16, block 7, SIGNIFICANT HISTORICAL DATA and on DA Form 2410, block 13a, LCF 1. Line out the CURRENT HSF counts on the DA Form 2408–13 when the replacement engine is installed and enter the new HSF counts for the replacement engine. Update the multifunction display with the correct HSF counts for the replacement engine.

12. SCHEDULED INSPECTION INFORMATION.

b. NEXT PHASE/SCHEDULED INSP (NO). Enter the number of the next phase or scheduled inspection. Computer generated by ULLS-A.

c. NEXT PHASE/SCHEDULED INSP DUE AT. Enter the aircraft hours the next phase or scheduled inspection is due. Computer generated by ULLS-A.

d. HOURS OF OPERATION TO NEXT PHASE/SCHEDULED INSPECTION. Leave blank when using the manual method of recordkeeping. Computer generated by ULLS-A.

e. PMD DUE. This block is left blank for Non-PMD aircraft.

DATE COMPLETED. Enter the date (dd mmm yy) the preventive maintenance daily inspection was completed. DO NOT erase. For aircraft under PMS maintenance leave blank.

PID. Enter the PID of the individual who completed the daily inspection.

Note. If any faults are found during the PMD they will be entered on the DA Form 2408–13–1 in the first open Fault Information block.

**13. LOCAL USE: Enter the ground run time and starts for APU’s without hour meters that require operating hour and start data per the TM 23 and TB 1–1500–341–01 (For example, 10 JAN 95, 1 start, .5 hrs.) This data will be combined with the hours and start data for the first flight of the next mission day and entered on DA Form 2408–12, block 6a., APU: STARTS HOURS for that flight. Other data may be entered in this block as directed by unit commander.
<table>
<thead>
<tr>
<th>AIRCRAFT SERIAL NUMBER</th>
<th>MODEL</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8424235</td>
<td>AH-64A</td>
<td>27 AUG 93</td>
</tr>
</tbody>
</table>

PART I - FAULT INFORMATION

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYS</th>
<th>DATE</th>
<th>NO</th>
<th>TIME</th>
<th>PID</th>
<th>MAL EFL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>23 AUG 93</td>
<td></td>
<td>1200</td>
<td>GL9040</td>
<td>2</td>
</tr>
</tbody>
</table>

FAULTS/REMARKS

- R-60 PANEL HAS ONE NUT PLATE NOT INSTALLED

ACTION

- REENTERED TO DA FORM 2408-14-1

<table>
<thead>
<tr>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELAY REQ</th>
<th>0036-0025</th>
<th>WUC</th>
<th>02</th>
<th>TI MANHOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>SYS</td>
<td>DATE</td>
<td>NO</td>
<td>TIME</td>
</tr>
<tr>
<td>A</td>
<td>27 AUG 93</td>
<td>1000</td>
<td>RB9328</td>
<td></td>
</tr>
</tbody>
</table>

FAULTS/REMARKS

- FLT 1 OK

ACTION

<table>
<thead>
<tr>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELAY</th>
<th>WUC</th>
<th>TI MANHOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRCRAFT SERIAL NUMBER

<table>
<thead>
<tr>
<th>834.8</th>
<th>WHEN DISC</th>
<th>HOW REC</th>
<th>MAL EFL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTION

- REPLACED RED MAIN ROTOR BLADE WITH S/N C10-1936

INSP OK

- Y. Mueller

<table>
<thead>
<tr>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL9040</td>
<td>0</td>
<td>3.0</td>
<td>RL3724</td>
<td>0</td>
<td>15</td>
<td>ST101</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>TBI622</td>
<td>0</td>
<td>1.4</td>
<td>T30919</td>
<td>0</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELAY</th>
<th>WUC</th>
<th>TI MANHOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2408-13-2</td>
<td>05402</td>
<td></td>
</tr>
</tbody>
</table>

AIRCRAFT INSPECTION AND MAINTENANCE RECORD

For use of this form see DA Form 2408-751; the proponent agency is DCSLOG

Figure 2-9A. Sample of a completed DA Form 2408–13–1 (Aircraft Inspection and Maintenance Record) (Illustration #1)
Figure 2-9B. Sample of a Completed DA Form 2408–13–1 (Aircraft Inspection and Maintenance Record) (Illustration #2)
Legend for Figure 2-9C:

Preparation instructions (by block number and title) for completion of a DA Form 2408–13–1, Aircraft Inspection and Maintenance Record

1. **AIRCRAFT SERIAL NUMBER.** Enter the complete aircraft serial number (seven numerical digits).

2. **MODEL.** Enter the aircraft mission, design, and series.

3. **DATE.** The pilot will enter the date (dd mmm yy) of the first takeoff of the mission day.

4. **PAGE.** Pages are to be numbered by the mechanic, crew chief or pilot at the beginning of each mission day. Enter the page number (black lead pencil) beginning with "1." As additional DA Form 2408–13–1 are added, enter the next page number.

PART I—FAULT INFORMATION

Any person who discovers a fault or condition affecting the operation/flight of the aircraft, training device/simulator, or mission-related equipment aboard the aircraft will record it in a FAULT INFORMATION block.

STATUS.

Enter the proper status symbol in this block. Once a status symbol is entered in the STATUS Block, it will not be erased or changed even if entered in error (para 1–8). The person who corrects a red "dash" or red diagonal "X" fault will enter their last name initial over the status symbol. A red "X" or circled red "X" status symbol will be initialed over by a qualified designated representative appointed by the unit or activity commander. When clearing a red "X" or circled red "X" a ballpoint pen with blue or black ink, or technical inspector's stamp may be used. The maintenance test pilot will initial the symbol after they complete the test flight and the aircraft is cleared for flight. When more than one person completes the corrective action for a fault, other than a phase, periodic, or progressive phase maintenance, the
senior mechanic, who performed part of the corrective action will initial the status symbol for entries with a red diagonal "/" or red dash "-" status. Initials placed in this block will not be erased.

Note. Changing the status symbol, for armament, electronic, and other mission-related equipment, to a less serious status symbol is not needed for a one time evacuation mission per paragraph 1–10.

SYS. ULLS-A users only. Enter the system code that shows which system the fault is related to. System Codes can be found on the DA Form 2408 in front of the logbook. Code "A" will be used for all aircraft faults. Electronic faults that do not affect aircraft readiness and are not reportable under AMSS will also use code "A." Electronic equipment faults that affect readiness and are reportable under AMSS will use code "E." All armament faults will use code "W."

DATE. Enter the date (dd mmm yy) a fault is discovered, or a remark is made. When the fault is reentered from the DA Form 2408–14–1 the original date of the fault will be entered.

NO. Leave blank for units using the manual recordkeeping system. Computer generated by ULLS-A.

TIME. Enter the time (24-hour clock) the fault was discovered or an inspection/service was entered. When a fault is reentered from the DA Form 2408–14–1 leave this block blank.

PID. The person making the entry will enter his or her personnel identifier.

FAULT/REMARKS

(a) The person who finds a fault or removes a component/module or part will immediately make an entry on the first open line in the FAULT/REMARKS section. Enter the proper status symbol in the STATUS block, and update the status symbol on the DA Form 2408–13, SYSTEM STATUS block, when it applies.

(b) For ULLS-A/LAS users, when related maintenance actions are needed to correct a fault, enter the primary fault in the first open FAULT INFORMATION block on the DA Form 2408–13–1. The related maintenance actions will be entered on a DA Form 2408–13–2 (Related Maintenance Actions Record). For users under the manual recordkeeping system, if only one related maintenance action is needed to correct a fault, it may be entered on the DA Form 2408–13–1. If more than one related maintenance action is required, the related maintenance actions will be entered on a DA Form 2408–13–2.

(c) After a flight, if no faults are noted, the pilot will enter a remark such as "Flt 1 OK," then enter his or her PID, the date, time, and aircraft hours in the corresponding blocks. If the pilot has a remark to make regarding the aircraft or installed mission-related equipment, he or she will enter the remark in the FAULT/REMARKS section, PID in the PID block, and the date in the DATE block. If faults or deficiencies are noted during the flight, the pilot will precede the fault or deficiency entry with "FLT (corresponding flight number for the mission day)," or "Test Flight" if the fault or deficiency is discovered during a test flight, along with his or her PID in the PID block, and all applicable portions of the FAULT INFORMATION block. Use as many Fault Information blocks as necessary to enter faults, deficiencies, and remarks; with only one fault/remark per FAULT INFORMATION block. If more space is needed, to enter a fault/remark, than is provided in a FAULT INFORMATION block then enter "Continued" on the last line of the FAULT/REMARKS section, and continue the fault/remark in the next open FAULT INFORMATION block. If the fault/remark will not fit the space provided in the last FAULT INFORMATION block on the backside of the form, then enter "Continued," at the end of the last line of the FAULT/REMARKS section, and continue the fault/remark on the next page.

(d) When a test flight or MOC is needed after maintenance, enter a red dash in the STATUS block, and when it applies update the DA Form 2408–13, SYSTEM STATUS block. In the FAULT/REMARKS section enter "Test Flight Required," "Test flight due," "MTF required," "MTF due," or "MOC Required" and give the reason(s) why.

(e) Entries are also needed for aircraft accidents, forced or precautionary landings, airspeed limitations, or engine torque exceeded. Include the cause and damage, if any.

(f) If an aircraft becomes contaminated, refer to paragraph 1–8 and appendix B.

AC HRS. Enter the actual aircraft hours at the time the inspection or service was entered, or when the fault was discovered. Leave blank, when a fault is reentered from the DA Form 2408–14–1.

WHEN DISC. ULLS-A/LAS users. Enter the appropriate When Discovered Code, for faults and discrepancies, from DA Form 2408 or table 1–4. Leave blank when a remark is in the FAULT/REMARKS section.

HOW REC. ULLS-A/LAS users. Enter the appropriate How Recognized Code, for faults and discrepancies, from DA Form 2408 or table 1–5. Leave blank when a remark is in the FAULT/REMARKS section.

MAL EFF. ULLS-A/LAS users. Enter the appropriate Malfunction Effect code, for faults and discrepancies, from DA Form 2408 or table 1–6. Leave blank when a remark is in the FAULT/REMARKS section.

DELAY Enter the reason for the delay. For example, enter the work order number of the work request to fix the fault or condition, or enter the supply requisition number for a repair part that is required to repair the fault, or enter "2408–13–2" when a DA Form 2408–13–2 is needed to list related maintenance actions for clearing the fault or deficiencies. When a fault is reentered from the DA Form 2408–14–1 leave blank.

WUC. ULLS-A/LAS users. Enter the work unit code (WUC) that best describes which component or module the fault or inspection entry pertains to. If a WUC, that applies to the component, module, or area, has not been established enter the functional group code, from DA Form 2408 or table 1–10, which best fits the fault or inspection. Leave blank when a remark is in the FAULT/REMARKS section.

52 DA PAM 738–751 • 15 March 1999
PART II—CORRECTING INFORMATION.

(a) When a fault, deficiency, condition, or incorrect entry is corrected; directives (such as, SOF messages, ASAMs, TBs, or MWO’s) are applied; and components/modules or other repair parts are removed and reinstated, or replaced the person making the corrective action will enter the action taken in the CORRECTING INFORMATION block, which is to the right of the FAULT INFORMATION Block. Using words or phrases, such as "applied," "tested," "installed," "serviced," "replaced," "repaired," "adjusted," or "erroneous entry," with other brief information about the action, will be enough to describe the corrective action. It will not be considered in error if you use one or more words to describe action taken. DO NOT use the word "corrected."

Note. A few examples of what can be entered in the FAULT/REMARKS, and CORRECTING INFORMATION sections are:

(1) "PMD due," "PMS due," "Phase Insp Due," "#2 Phase Insp due" — "completed," "PMD completed," "PMS completed," "Insp completed," "#2 Phase Insp completed," and so on.

(2) "Test flight due," "Test flight required," "MOC required" — "completed," "Test flight completed," "Mainte-
nance test flight completed," "MTF completed," "MOC completed," "Maintenance operational check OK," and so on.

(3) "Mag compass calibration due" — "completed," "Mag compass Cal. completed."

(4) "Copilot's door window crazed" — "Replaced," "Changed," "Window replaced," "Replaced window assy, " "Replaced copilot's door window," "Changed window."

(6) "Engine deck torn" — "Replaced," "Eng. deck repl.," "Deck replaced."

(b) Upon completion of the corrective action, the person making the corrective action will place his or her PID in the PID block, and last name initial over the status symbol in the FAULT INFORMATION block. To clear a red "X" or circled red "X" symbol, the completed action must be inspected by the commander or designated representative per paragraph 1–9. If the action is found to be satisfactory, the statement "Insp OK," and the inspector’s signature will be entered on the line following the action taken. If there is no space, the signature may be placed above the corrective action taken. The inspector will then enter his or her PID in the TIPID Block, place last name initial over the status symbol in the FAULT INFORMATION block, and change the status symbol in the SYSTEM STATUS Block on the DA Form 2408–13 if it applies.

Note. A technical inspector's stamp may be used instead of the statement and signature. If more than one technical inspector performed the technical inspections to complete the fault correction, the senior technical inspector performing the inspection will enter his or her PID in the TIPID Block, enter "Insp OK," and signature in Action section.

(c) When corrective action is taken by other than the parent unit or designated support activities, the person taking the action will enter his or her unit or activity designation in this block. The unit delegation orders are official, and allow the delegated persons to sign off red "X" or circled red "X" entries on aircraft belonging to other units or activities. Qualified designated representatives may also certify work performed, or do one time inspections on aircraft belonging to other units or activities. They will enter the unit or activity in this block, and place his or her last name initial over the status symbol in the FAULT INFORMATION block.

(d) Entries on the DA Form 2408–13–1 that call for entries on historical forms, and records (such as, replacement of reportable items, ASAMs, SOF messages, TBs, MWO applications, special inspections/services/replacements performed, and so forth) is the responsibility of the technical inspector that inspected the corrective action.

Note. A checklist (table 3–9) is provided to help ensure that entries are made on all forms and records that apply, before releasing aircraft from maintenance. The checklist is also provided to verify that a quality inspection of forms, records, and files has been done. The use of the checklist is not mandatory; however, it is recommended for newly assigned maintenance and quality control personnel.

DATE. Enter date (dd mmm yy) of the corrective action.

TIME. Enter the time of day (24 hour clock) the corrective action was completed.

ACFT HRS. Enter the actual aircraft hours when the corrective action, on a fault, condition, inspection, serv-

ROUNDS. Enter the cumulative rounds fired from DA Form 2408–4–1, block 5e for armament system faults, discrepancies and inspections.

ACTION CODE. ULLS-A/LAS users. Enter the Action Code from DA Form 2408 or table 1–9 that best de-

WUC. ULLS-A/LAS users. Enter the Work Unit Code that best describes which component/module or part the corrective action pertains to. If a WUC has not been established, that applies to the component/module, part or area, enter the functional group code from DA Form 2408 or table 1–10 that best fits the corrective action. The corrective action WUC may be different from the when discovered WUC.

ACTION. Enter an abbreviated explanation of the action taken.

PID. Enter the personnel identifier of the person(s) accomplishing all or part of the corrective action. If a DA Form 2408–13–2 was used, all personnel completing actions on that form will enter their PID on this form. When a scheduled inspection (such as, phase, periodic, or progressive phase maintenance) is completed, DO NOT reenter the PIDs from the maintenance checklist.
The maintenance supervisor will enter his or her PID certifying completion of the inspection.

CAT. ULLS-A/LAS users. Enter the level of maintenance for the action taken ("C" for crew level, "O" for AVUM level, "F" for AVIM level, or "D" for depot level). If an individual performs both crew level and AVUM level work to perform the corrective action, they will enter their PID twice, once for crew level maintenance hours and once for AVUM level maintenance hours.

Note. When DA Form 2408–13–1, Oct 91, or DA Form 2408–13–3, Nov 91, is used the category will be entered in the HOURS Block preceding the manhours expended by each individual who corrected the fault.

HRS. ULLS-A/LAS users only. Enter the direct "hands on" manhours, in hours and tenths, expended during the corrective action. This time does not include the time expended chasing parts or tools, but does include time expended filling out forms and records. All personnel completing related maintenance actions on a DA Form 2408–13–2 will enter manhours expended in this block. At the completion of a scheduled inspection (such as, phase, periodic or progressive phase maintenance) the supervisor will enter the total number of manhours expended to complete the visual inspection including any required disassembly. The supervisor will separate the manhours by category of maintenance. When extensive maintenance is performed, such as an engine replacement, and there are not enough HRS blocks available for all the mechanics performing maintenance to enter their manhours, the maintenance supervisor may consolidate the manhours by category and use his or her PID to enter the manhours.

Note. When DA Form 2408–13–1, Oct 91, or DA Form 2408–13–3, Nov 91, is used the CMH, OMH, FMH, and DMH blocks will be left blank.

TIPID. Enter the personnel identifier of the technical inspector who inspected the maintenance action. If more than one technical inspector performed the technical inspections of the maintenance action or related maintenance actions, the senior technical inspector, performing the inspection, will enter his or her PID in this block.

TI MANHOURS. ULLS-A/LAS users only. This space is provided for the Technical Inspector(s) to enter the manhours, in hours and tenths, it took to inspect the corrective action. This will include the time used for the inspection, and to complete forms and records. If more than one technical inspector performed the technical inspections on the maintenance action or related maintenance actions, the senior technical inspector, performing the inspection will enter the total manhours used to complete the inspection.
Figure 2-10A. Sample of a completed DA Form 2408–13–2 (Related Maintenance Actions Record) (Illustration #1, Front)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAK</td>
<td>Rotor brake locked</td>
<td>INSP OK A. Muellen</td>
<td>TB0622</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>TAK</td>
<td>Power distributor</td>
<td>INSP OK A. Muellen</td>
<td>TB0622</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>TAK</td>
<td>Connectors disconnected</td>
<td>SAFETY WIRED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAK</td>
<td>Grounding clip jumper</td>
<td>RECONNECTED</td>
<td>RL3722</td>
<td>0</td>
<td>.4</td>
</tr>
<tr>
<td>TAK</td>
<td>Terminal disconnected</td>
<td>INSP OK A. Muellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKR</td>
<td>Main blade rotor</td>
<td>REINSTALLED PIN</td>
<td>TB0622</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>MKR</td>
<td>Attaching pin removed</td>
<td>INSP OK A. Muellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAK</td>
<td>Lead/lag attaching</td>
<td>REINSTALLED</td>
<td>TB0622</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>TAK</td>
<td>Pin removed</td>
<td>INSP OK A. Muellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAK</td>
<td>Red main rotor blade</td>
<td>REPLACED WITH</td>
<td>TL3242</td>
<td>0</td>
<td>.2</td>
</tr>
<tr>
<td>TAK</td>
<td>Removed S/N: C10-1876</td>
<td>S/N: C10-1936</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>DEICE SYSTEM CONTROLLER</td>
<td>ADJUSTED</td>
<td>RL3722</td>
<td>0</td>
<td>.1</td>
</tr>
</tbody>
</table>

For use of this form see DA PAM 738-751; the proponent agency is DCSLOG.

Figure 2-10A. Sample of a completed DA Form 2408–13–2 (Related Maintenance Actions Record) (Illustration #1, Front)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAIN Rotor Blade</td>
<td>COMPLETED</td>
<td>55</td>
<td>C</td>
<td>.7</td>
</tr>
<tr>
<td></td>
<td>TRACK AND BALANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPERATIONAL CHECK DUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-10B. Sample of a completed DA Form 2408–13–2 (Related Maintenance Actions Record) (Illustration #2, Reverse)
Legend for Figure 2-11:
Preparation instructions (by block number and title) for completion of a DA Form 2408–13–2, Related Maintenance Actions Record

This form will be used as a supplemental sheet for the DA Forms 2408–13–1 and 2408–13–3.

DATE. Enter the date (dd mmm yy) the DA Form 2408–13–2 was started.

Page. Each form in the Flight Pack will be assigned a page number starting with page 1 for the first DA Form 2408–13–1 in the logbook. When a new DA Form 2408–13–2 is added to the logbook it will be assigned a page number. If there are three DA Forms 2408–13–1 in the logbook, when the 2408–13–2 is added, the page number of the DA Form 2408–13–2 will be 4. When this form is used to document related maintenance actions for AVIM or Depot component repair, the DA Form 2408–13–3 used to document initial inspection of the component will be page 1. The first DA Form 2408–13–2 will be page 2, the second page will be 3, and so on.

1. STATUS. Enter the status symbol assigned to the fault or deficiency listed on the DA Form 2408–13–1 or 2408–13–3. DO NOT initial over the status symbol in this block. When the fault, in block 7, is corrected, clear the status for the fault on the DA Form 2408–13–1 or 2408–13–3.

2. SERIAL NUMBER. Enter the serial number (seven numeric characters) of the aircraft. When this form is used to document AVIM or Depot level component repair, enter the component serial number.

3. SYSTEM CODE. Enter the system code of the fault from the DA Form 2408–13–1 or 2408–13–3, FAULT INFORMATION block.
4. **TIME.** Leave blank.

5. **FAULT DATE.** Enter the date (dd mmm yy) of the fault from the DA Form 2408–13–1 or 2408–13–3, FAULT INFORMATION block.

6. **FAULT NUMBER. ULLS-A/LAS user.** If a fault number has been assigned by the computer, enter the fault number. Leave blank if no fault number has been assigned.

7. **FAULT.** Enter the fault exactly as it is written on the DA Form 2408–13–1 or 2408–13–3. Only one fault will be written in this block.

 Note. When using DA Form 2408–13–2, NOV 91, do not enter a fault in block 7 on the reverse side of the form. Only one fault will be entered on each form.

8. **STA.** The person entering related maintenance actions on this form will enter the proper condition status symbol according to the seriousness of each related maintenance action (see para 1–8).

9. **RELATED MAINTENANCE ACTIONS.** Enter a short description of the related maintenance action to be done to clear the fault listed in block 7. For example, the status symbol on the DA Form 2408–13–1 is a Red "X" for foreign object damage (FOD) to engine, you would enter "Engine inlet cowling removed," "Main drive shaft removed," and so forth. Enter only one related maintenance action at a time in the space provided. Use as many lines and forms, as needed, to enter related maintenance actions called for to clear the fault listed on the DA Form 2408–13–1 or 2408–13–3. The signature following the maintenance related action is not needed in this block. If the unit or activity commander requires a signature following the maintenance related action, this must be covered in the unit or activity Standard Operating Procedures (SOP).

 Note. If both sides of the form are filled and more room is needed, enter "Continued," or "Cont" at the end on the last line, and start a new DA Form 2408–13–2. On the new form enter the fault in Block 7 as it was originally entered and enter the word "continued" or "cont" following the fault. Blocks 1 through 6 do not have to be completed.

10. **ACTION.** Enter the corrective maintenance action taken. DO NOT use the word "corrected." A few examples of what can be entered are:

 c. "White main rotor PC link removed"—"reinstalled," "Reinstalled MR PC link," "Reinstalled white MR PC Link."

11. **PID.** The person completing the related maintenance action will place his or her PID in this block.

12. **CAT. ULLS-A/LAS users.** Enter the level of maintenance for the action taken ("C" for crew level, "O" for AVUM, "F" for AVIM, and "D" for depot).

 Note. When using the DA Form 2408–13–2, Nov 91, enter the category of maintenance in the MMH Block preceding the manhours.

13. **MMH. ULLS-A/LAS users.** Enter the direct "hands on" manhours, in hours and tenths, to complete the action taken. Total each level of maintenance by PID and enter the total on the DA Form 2408–13–1 or 2408–13–3, HRS block.

 Note. If the action taken to clear a related maintenance action entered on the DA Form 2408–13–2 is found unsatisfactory the status symbol in block 8, no matter how serious will not be initialed over.
Legend for Figure 2-12:

Preparation instructions (by block number and title) for completion of a DA Form 2408–14–1, Uncorrected Fault Record (Aircraft)

Page of . Enter page number and total number (black lead pencil) of pages.

Note. For ULLS-A users' blocks 1 through 8 will automatically be computer generated when a "Y" is entered to treat a fault as a 'deferred fault.'

1. **NOMENCLATURE.** Enter the name of the item.

2. **MODEL.** Enter the aircraft MDS.

3. **SERIAL NUMBER.** Enter the aircraft serial number (seven numeric digits).

4. **STATUS SYMBOL.** Enter the status symbol that was assigned to the fault, as it appears on DA Form 2408–13–1 or other related forms. DO NOT initial over the status symbol when you reenter an entry to the DA Form 2408–13–1, or 2408–13–3. You are only reentering a fault and are not clearing the status symbol on this form.

5. **FAULT DATA:**
 b. **FAULT DATE.** Enter the fault date from the DA Form 2408–13–1, or 2408–13–3.
 d. **FAULT.** Enter the fault exactly as it is written on the DA Form 2408–13–1 or 2408–13–3.
6. REASON FOR DELAY. Enter the reason for delay. If the repair is delayed due to shop backlog, enter the work request number. If the repair is delayed because of replacement parts, enter the supply requisition number/DOC number. Enter "Awaiting phase," "Awaiting PMS2," or a similar phrase when the maintenance has been deferred because aircraft or component disassembly would be required causing unnecessary aircraft down time.

7. DATE FROM 2408–13–1. Enter the date (dd mmm yy) the fault was transferred from the DA Form 2408–13–1 or 2408–13–3.

8. APPROVED BY. Enter the signature of the person that controls the entry of faults from other maintenance forms to the DA Form 2408–14–1.

9. DATE TO 2408–13–1. Enter the date (dd mmm yy) the fault is reentered on the current DA Form 2408–13–1 or other related forms. The person doing the reentry will enter the phrase "Reentered from 2408–14–1" following the fault reentry on DA Form 2408–13–1.

DA Form 2408-18, Oct 97

Equipment Inspection List

For use of this form see DA Form 738-751; the proponent agency is DCSLOG

Legend for Figure 2-13:
Preparation instructions (by block number and title) for completion of a DA Form 2408–18, Equipment Inspection List

Page of . Enter the page number and the total number (black lead pencil) of pages.

1. NOMENCLATURE. Enter the item name.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PMS</td>
<td>TM 1-1520-238-23-1</td>
<td>10H</td>
<td></td>
<td>840.3</td>
<td></td>
</tr>
<tr>
<td>PMS</td>
<td>TM 1-1520-238-23-1</td>
<td>14D</td>
<td></td>
<td>30 ANG93</td>
<td></td>
</tr>
<tr>
<td>T/R SWASHPLATE BEARING</td>
<td>TM 1-1520-238-23-1</td>
<td>10H</td>
<td></td>
<td>840.3</td>
<td></td>
</tr>
<tr>
<td>INSP P/N 7-311527038-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APU RUN-UP</td>
<td>TM 1-1520-238-23-1</td>
<td>14D</td>
<td></td>
<td>30 ANG93</td>
<td></td>
</tr>
<tr>
<td>M/R STRAP PACK INS</td>
<td>TM 1-1520-238-23-1</td>
<td>10H</td>
<td></td>
<td>840.3</td>
<td></td>
</tr>
<tr>
<td>M/R STRAP PACK INS</td>
<td>TM 1-1520-238-23-1</td>
<td>14D</td>
<td></td>
<td>30 ANG93</td>
<td></td>
</tr>
<tr>
<td>PNVS MOUNTING SCREW INS</td>
<td>TM 1-1520-238-23-1</td>
<td>10H</td>
<td></td>
<td>840.3</td>
<td></td>
</tr>
<tr>
<td>PNVS MOUNTING SCREW INS</td>
<td>TM 1-1520-238-23-1</td>
<td>14D</td>
<td></td>
<td>30 ANG93</td>
<td></td>
</tr>
<tr>
<td>XMSN EXTERIOR AND GEAR</td>
<td>TM 1-1520-238-23-1</td>
<td>10H</td>
<td></td>
<td>840.3</td>
<td></td>
</tr>
<tr>
<td>SUPPORT CLEANING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSN EXTERIOR AND GEAR</td>
<td>TM 1-1520-238-23-1</td>
<td>14D</td>
<td></td>
<td>30 ANG93</td>
<td></td>
</tr>
<tr>
<td>SUPPORT CLEANING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAIN XMSN OIL SAMPLE</td>
<td>TM 1-1520-238-23-1</td>
<td>25H</td>
<td></td>
<td>848.8</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Legend:
- H = ACFT HRS
- D = DAYS
- M = MONTHS
- Y = YEARS
- R = ROUNDS
- C = CYCLES
- S = STARTS
- A = APU OPERATING HOURS
- P = APU STARTS
- F = HOT SECTION FACTORS
2. MODEL. Enter the aircraft MDS.

3. SERIAL NUMBER. Enter the aircraft serial number (seven numeric digits).

4. INSP NO. For ULLS-A or LAS users. Leave blank when using the manual recordkeeping system.

5. ITEM TO BE INSPECTED. Enter special inspections/replacements for aircraft, components/modules, or accessories that—

 a. Are to be tested, calibrated, reworked, or inspected at aircraft operating time in hours or calendar time intervals, not compatible with aircraft scheduled maintenance inspection intervals.

 b. Are to be replaced on a calendar time basis or when items are due replacement on a calendar time basis in combination with operating time (hours) basis (whichever comes first)

 c. Are inspected, serviced, checked, and/or replaced when they become due at the following frequencies:

 (1) Actual component operating hours.

 (2) Engine or APU starts.

 (3) Cycles operated.

 (4) Hot section factors.

 d. Are replaced on a rounds fired, cycles operated, or number of engine starts basis or actual component operating hours basis.

 e. Are called for on a recurring basis, directed by ASAM/SOF message/TB/urgent MWO or an interim message. Once this inspection/replacement is made part of the aircraft maintenance inspection checklist this entry will be removed.

 f. Use a two-line entry for items calling for inspection/replacement due on a calendar and/or an aircraft or component/module/accessory actual operating time, number of engine starts, and/or cycles operated basis. Use one line to note aircraft or component/module/accessory operating time, and the other line to note the calendar time. List items to be inspected or replaced by using an abbreviated title.

 Note. When inspections, services, calibrations, tests, or replacements of items are listed on scheduled maintenance check lists, and become due concurrently with the scheduled maintenance inspection, they will not be recorded on this form.

6. REFERENCE. Enter the TM, TB, or other directive number that calls for the inspection or replacement.

7. FREQUENCY. Enter the frequency of the special inspection, test, calibration, or replacement.

8. NEXT DUE. Manual recordkeeping system. Use a black lead pencil, enter the aircraft operating hours, component/module or accessory operating hours, rounds fired, or the calendar date that the next inspection or replacement is due. (Example. If you did a 6-month inspection on 14 Jul 89, then the next inspection is due on 14 Jan 90.) When a specific item is due for an inspection, make an entry on the DA Form 2408–13–1. After you make your entries on the DA Form 2408–13–1, and complete the inspection or replacement, erase the entry in this column and enter the date, rounds fired, component/module, accessory, or aircraft operating time, in hours and tenths, that the next inspection or replacement is due.

Note. The use of transparent tape in column 8 is authorized. Tape must be of the type you can print on with a pencil.

ULLS-A users. When a specific item is due for an inspection or replacement, an entry will be automatically computer generated on the DA Form 2408–13–1. When the corrective action from the DA Form 2408–13–1 is entered into the ULLS-A data base it automatically updates the DA Form 2408–18, block 8, NEXT DUE. If the inspection or replacement is to be completed early and an entry was not computer generated, make an entry on the DA Form 2408–13–1. After completion of the inspection or replacement, make corrective entries on the DA Form 2408–13–1, and update the DA Form 2408–18 portion of the ULLS-A data base (do only if the entry on the DA Form 2408–13–1 was not computer generated). Print a new DA Form 2408–18–E after updating the ULLS-A data base. Replace the DA Form 2408–18–E in the logbook with the new form. Attach the old form to the current flight pack.

Note. When components/modules are removed for rework, such as rotor head components for rework (turned 180 degrees at 1200 hours) the entire entry will be lined out upon completion of the rework. When another rotor head is installed without the components being turned 180 degrees, another entry telling you when the rework is due will be made.

9. COMPLETED AT. This block may be used as desired.

Chapter 3
Maintenance Forms and Records

3–1. General maintenance forms

 a. The forms in this chapter are used in the scheduling, performing, recording, tracking by serial number, and managing maintenance operations of aircraft, aviation associated equipment, and reportable components and modules.

 b. Maintenance forms show the results of scheduled and special maintenance inspections, checks, and services; replacement of reportable components and modules, flight safety parts and other non-reportable items aboard aircraft. They also show the results of diagnostic checks and form the bond between maintenance and needed supply actions.

 c. This chapter also tells you how to use, prepare, process, and dispose of maintenance forms used in the support of maintenance of aircraft, aviation associated equipment, and reportable components and modules.

3–2. Product quality deficiency reports

 a. Purpose. The PQDRs are made out and submitted to AMCOM to suggest corrections and improvements to aircraft and aviation-associated equipment, including mission-related equipment, and to
alert AMCOM to problems encountered by the user due to receipt of defective equipment. A PQDR is also used when reporting initial failure of a Stock-Funded Depot Level Repairable (SF/DFR) item to obtain stock fund account credit. The PQDR data is used by NMP, logistics, and other managers at AMCOM to assess the fault, failure, or condition of the item, to validate or change the current maintenance and/or inspection standards to maintain airworthiness and improve the operational readiness of aviation equipment per AR 750–2.

b. Categories of PQDR. The two categories of PQDRs are:

(1) Category I. E-34 confused the description by operational or maintenance procedure for aircraft, mission related equipment, component and module, or repair part whose use is critical to airworthiness, and any failure that could be expected to cause loss of the aircraft and/or serious injuries to the air crew or ground personnel.

(2) Category II. For items that do not meet the definition of a Category I item.

For items that may adversely affect serviceability, durability, maintainability and/or reliability of an aircraft system, subsystem, repair part, component and module, and/or mission related equipment.

Must be sent within 5 working days after discovering the fault or failure. The owning or support activity finding the fault or failure must prepare and send the original SF 368 directly to the Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000.

c. Transmission. The PQDRs may be called in by telephone, sent in by electrical message (DD Form 173/3 (Joint Message Form) to Commander, USASC, Ft. Rucker, AL/CSSC-I/; or e-mail to css@rucker-safety.army.mil; or FAX to ATTN: CSSC-I, at DSN 558-9528/2266/9478, commercial 334-255-9528/2266/9478.

(2) Category II. For items that do not meet the definition of a Category I item.

(3) Conditions resulting from operator and/or maintenance induced errors (that is, improper installation and/or operation, unauthorized repair, alteration, blade strike or ground towing damage). Items purchased locally or repaired under a locally authorized repair contract. Use local procedures to report these items.

(4) Items purchased locally and/or maintenance induced errors (that is, improper installation and/or operation, unauthorized repair, alteration, blade strike or ground towing damage). Items purchased locally or repaired under a locally authorized repair contract. Use local procedures to report these items.

(5) Preservation, packaging, or marking errors (see AR 735–11–2).

(6) Shipping type errors such as overages, shortages, wrong item received, or expired shelf life. Report those problems on the SF Form 364 (Report of Discrepancy (ROD)) (see AR 735–11–2).

(7) Transportation type errors such as shortages, loss, or damage during transportation (see AR 55–38).

(8) Military Assistance Program items after they have been received by the foreign government (see AR 12–12).

(9) Medical material (see DLAR 4155–28).

(10) Subsistence material.

(11) Malfunctions involving ammunition and explosives (see AR 75–1).

(12) Components and modules that are removed and/or replaced during controlled exchange or that do not correct the fault.

(13) FOD to turbine engines.

(14) Items removed because of AOAP lab recommendations.

g. The PQDRs will not be withheld for any of the following reasons:

(1) Manufacturers’ representatives have shown that they are aware of the problem.

(2) Another unit within your command has already sent a deficiency report on the same problem.

h. Hot line numbers. The AMCOM Deficiency Report hot line number (during regular duty hours) is DSN 897-1658 or commercial 35898-5000. After regular duty hours, weekends, or holidays contact AMCOM, Command Operations Center (COC), DSN 897-
2066 or commercial (256) 313-2066. E-mail address is “amsam-
coc@exchange1.redstone.army.mil.” The Fax number is DSN 746-
4591 or commercial (256) 876-4591.

Table 3–1
SSCOM (TROOP) QDR Action Point Address
MAT CAT Position 1: B
or RIC: A35
or FSC: 1660, 1670, 1940, 2330, 2590, 2805, 2835, 2910, 3010, 3030,
3110, 3410, 3510 - 3540, 3605, 3635, 3655, 3730, 3740, 3910, 3930,
3990, 4010 - 4030, 4110 - 4140, 4230, 4240, 4310 - 4330, 4510,
4520, 4540, 4610, 4710 - 4730, 4810, 4940, 5120, 5140, 5220, 5305,
5306, 5310, 5315, 5325, 5330, 5340, 5355, 5360, 5365, 5410, 5411,
5419, 5450, 5540, 5670, 5680, 5920, 5925, 5930, 5950, 5975, 6105,
6110, 6115, 6130, 6135, 6145, 6150, 6230, 6620, 6645, 6670, 6680,
6685, 6690, 7105, 7110, 7125, 7195, 7230, 7310, 7320, 7360, 7460,
7490, 7610, 7690, 8010, 8030, 8040, 8105, 8115, 8140, 8145, 8340,
8415, 8465, 8475, 9510, 9520, 9905, 9999
SEND TO:
Commander
U.S. Army SSSCOM
ATTN: AMSSC-ADO
14 Kansas Street
Natick, MA 01760-5011
CALL or SEND MESSAGE TO:
Call:
DSN: 256-5043
Comm: (508) 233-5043
Datafax:
DSN 256-5286
Electronic Mail Box:
Hormsbee@natick-amed02.army.mil

Table 3–2
TACOM-ARDEC QDR Action Point Address —Continued
MAT CAT Position 1: D or M
or RIC: B14
or FSC: 1005-1055, 1090-1270, 1285-1330, *1336, **1340, 1345-
1398, ***2320 and 2350, 3220, 3400-3499, 3610, 4120, 4130, 4320,
4400-4499, 4520, 4540, 5120, 5810, 5811, 5815-6080, 6105, 6110,
6115, 6125-6145, 6350, 6605, 6615, 6625, 6660, 6665, 6675, 6680,
6685, 6690, 7105, 7110, 7125, 7195, 7230, 7310, 7320, 7460,
7490, 7610, 7690, 8010, 8030, 8040, 8105, 8115, 8140, 8145, 8340,
8415, 8465, 8475, 9510, 9520, 9905, 9999
SEND TO:
Commander
U.S. Army TACOM-ARDEC
ATTN: AMSTA-AR-QAW-C
Rock Island, IL 61299-7300
DODAAC: W4MK15
CALL or SEND MESSAGE TO:
Call:
DSN: 792-3803
Comm: (908) 532-3803
CFO HOTLINE:
DSN 992-1413
Electronic Mail Box:
Cfo@cecom2.monmouth.army.mil
Send Message:
CDR CECOM FT MONMOUTH NJ///AMSEL-LC-LEO-D-CS-CFO///
Info to: CDR AMC ALEX VA///AMCQA-P///

Table 3–3
CECOM QDR Action Point Address
MAT CAT Position 1: G, P, Q, U
or RIC: B16, B46, B56
or FSC: 1070, 1075, 1080, 2596, 2598, 2691, 3610, 4120, 4130, 4320,
4400-4499, 4520, 4540, 5805, 5810, 5811, 5815-6080, 6105, 6110,
6115, 6125-6145, 6350, 6605, 6615, 6625, 6660, 6665, 6675, 6680,
6685, 6695-6780, 6920, 6940-7050, 7460, 7595, 8130
SEND TO:
Commander
U.S. Army CECOM
ATTN: AMSEL-LC-LEO-D-CS-CFO
Fort Monmouth, NJ 07703-5000
DODAAC: W81D16
CALL or SEND MESSAGE TO:
Call:
DSN: 992-3803
Comm: (908) 532-3803
CFO HOTLINE:
DSN 992-4190
Comm: (908) 532-4190
Datafax:
DSN 992-1413
Electronic Mail Box:
Cfo@cecom2.monmouth.army.mil
Send Message:
CDR CECOM FT MONMOUTH NJ///AMSEL-LC-LEO-D-CS-CFO///
Info to: CDR AMC ALEX VA///AMCQA-P///

Table 3–4
AMCOM QDR Action Point Address
MAT CAT Position 1: L, H
or RIC: B17, B64
or FSC: 1280, *1336, **1340, 1337, 1338, 1410-1450, 1510-1730,
1810-1850, 2810, 2840, 2845, 2915, 2925, 2935, 2945, 2995, 3110-
3130, 4920, 4935, 4960, 5303, 5365, 6340, 6605, 6610, 6615, 6620,
6920, 8140. 9135
SEND TO:
Commander
U.S. Army AMCOM
ATTN: AMSAM-MMC-RE-FD
Redstone Arsenal
Huntsville, AL 35898-5000
DODAAC: W81D17
CALL or SEND MESSAGE TO:
Table 3–4
AMCOM QDR Action Point Address —Continued

Call:
DSN: 897-1658
Comm: (205) 313-1658

Datafax:
DSN: 746-4904

Electronic Mail Box:
cfo@redstone.army.mil

Send Message To:
CDR AMCOM REDSTONE ARSENAL AL//AMSAM-MMC-RE-FD//
Info to: CDR AMC ALEX VA//AMCQA-P//

Notes:
1 To determine correct address for particular NSNs under FSC 1336, check the AMDF for position 1 of the MAT CAT.
2 Free rockets only.

Table 3–5
TACOM QDR Action Point Address

MAT CAT Position 1: K

or RIC: AKZ

or FSC: 1900-1999, 2010, 2020, 2030, 2040, 2050, 2060, 2090, 2305, 2310-2315, *2320 and 2350, 2325-2340, 2410-2430, 2510, 2590, 2610, 2630-2695, 2815, 2820, 2830, 2940, 2950, 3020, 3040, 3101-3130, 3805-3815, **3820, 3825, 3830, 3835, 3895, 3910, 3930, 3950, ***3990, 4200-4299, 4310, 4320, 4610, 4930, 5420, 5430, 6610, 6630, 6640, 6640, 6641-6645, 3820, 3825, 3895, 3910, 3920, 3930, 3950, 2320 and 2350

SEND TO:
Commander
U.S. Army TACOM
ATTN: AMSTA-TR-E/MPA
Warren, MI 48397-5000
DODAAC: W81D19

CALL or SEND MESSAGE TO:
Call:
DSN: 786-5422
Comm: (810) 574-5422
Datafax:
DSN 786-6637

Electronic Mail Box:
tacomdrs@octagon.tacom.army.mil

Send Message To:
CDR TACOM WARREN MI//AMSTA-TR-E/MPA//
Info to: CDR AMC ALEX VA//AMCQA-P//

Notes:
1 Except SP artillery and antiaircraft guns.
2 Except well drilling equipment.
3 Except cargo nets.

Table 3–6
IOC QDR Action Point Address

MAT CAT Position 1: D or M (ammunition items only)

or RIC: B14 (ammunition only)

or FSC: 1300-1399

Table 3–6
IOC QDR Action Point Address —Continued

SEND TO:
Commander
U.S. Army IOC
ATTN: AMSIO-QAO
Rock Island, IL 61299-6000
DODAAC: W52P1J

CALL or SEND MESSAGE TO:
Call:
DSN: 793-3761
Comm: (309) 782-3761

Datafax:
DSN 793-3056

Electronic Mail Box:
cbrown1@ria-emh2.army.mil

Send Message To:
CDR IOC ROCK ISLAND IL//AMSIO-QAO//
Info to: CDR AMC ALEX VA//AMCQA-P//

Note. If you cannot decide where the report should go, send it to:

Commander
U.S. Army Materiel Command
ATTN: AMCQA-PM
5001 Eisenhower Avenue
Alexandria, VA 22333-0001

3–3. PQDR exhibits

a. Purpose. The PQDR exhibits are to provide additional evidence and data that may be related to the deficiency or failure of an item reported in a PQDR. Each exhibit selected will be given a thorough investigation and/or analytical tear down analysis by AMCOM, CCAD, TX, or a suitable contractor assigned by the AMCOM action office. Results of the tear down analysis will be furnished to the person that prepared the PQDR by AMCOM. Exhibits will be selected, retained, packaged, marked, and disposed of per procedures in the next paragraph. There is no requirement to hold SFDLR items for exhibits.

b. General instructions.

(1) Selection of exhibits. The type items below will automatically be selected and held as exhibits by the person that prepared the PQDR.

(a) Items that are reported as Category I PQDRs.
(b) Items that have been requested by the AMCOM action offices to be held as exhibits.
(c) Items that have manufacturing, modification, conversion, overhaul, rebuild, or repair deficiencies and the person that prepares the PQDR feels an analysis is needed.

(2) Retention of exhibit.

(a) SF 368, block 21, will be marked to show the action and disposition of the deficient item. For both Category I and II PQDRs a statement on the availability of the exhibit will be made in block 23. This statement will also include the name and phone number (DSN and commercial) for a point of contact at the location where the exhibit is being held. Exhibits will be held for 60 days from date of discovery of the defective item.

1. Category I reports will be acknowledged within 48 hours of receipt by AMCOM. The acknowledgment will include disposition instructions for exhibits.

2. Category II reports will be acknowledged within seven days of receipt. The acknowledgment will direct turn-in of the defective item or instruct the person, holding the exhibit, to hold the exhibit
an additional 60 days, from the date the acknowledgment letter is received, pending further disposition instructions.

(b) Items held as PQDR exhibits will be tagged with a Materiel Condition Tag per paragraph 3–20 and DD Form 2332 per paragraph 3–2 and figure 3–2.

c. The exhibit will be separated from other repair parts and components and modules, in a secure area, while awaiting disposition instructions. Aviation field personnel will safeguard the item and prepare it for shipment, taking care to package and hold for shipment samples of any fluids removed. Clean only as needed to ship the item. DO NOT disassemble, attempt repair, or remove evidence such as heat discoloration, splinters, or corrosion. When contaminate or foreign materiel is suspected as the cause of the fault or failure, photographs will be taken before cleaning and forwarded with the PQDR exhibit.

(3) Initiation of PQDR exhibit. When a Contract Field Service (CFS) representative, or representatives from the prime contractor, and/or other contractors ask to get a suspected component and module, part or assembly that will be used as a PQDR exhibit, the unit or support activity that has the exhibit will ensure that the contractor’s request is sent through the supporting AVIM or AVCRAD activity to AMCOM for approval. Components and modules, parts, and assemblies to be used as PQDR exhibits will not, under any condition, be released or shipped to contractors without the AMCOM action office’s disposition instructions through the proper accountable officer. When disposition instructions from AMCOM have not been received after 60 days from receipt of the acknowledgment letter, action will be taken by the PQDR initiating and/or supporting activity to dispose of the item through normal supply channels. The previously attached DD Form 2332 will be removed from the item(s) and container(s) before turn in to supply. This action will prevent the depot or contractor from performing costly tear down analysis on items that were not selected as PQDR exhibits.

c. Disposition of exhibit.

(1) Disposition instructions for all aircraft and aviation associated equipment items will be furnished by the AMCOM action office within 30 to 60 work days from the date of receipt of the PQDR. When notified that disposition instructions are coming, keep the exhibit until instructions are received. Aviation Intensive Management Items (AIMI) identified as exhibits are handled the same as non-AIMI exhibits. PQDR exhibit(s) disposition instructions take precedence over the AIMI return instructions.

(2) Upon receipt of the document management number (DMN) from AMCOM for those PQDRs calling for the exhibit to be retained, the PQDR initiating activity will coordinate with the support activity to ensure that the exhibit is cleared, preserved, tagged, and packaged to prevent damage during handling and shipping. DA Forms 2410, 2408–16 or 2408–16–1, and 2408–5–1, on reportable components and modules listed in TB 1–1500–341–01 will be shipped with the exhibit. The AMCOM DMN will also be included in the markings of the exhibit and container.

(3) The disposition instructions furnished by the AMCOM action office will list the assigned DMN as well as accountability, disposition, and transportation information. The PQDR exhibit will be shipped per instructions within 5 working days. To maintain control and accountability during exhibit processing and shipping, procedures in the next paragraph will be followed.

d. Transportation and marking of PQDR exhibits.

(1) The PQDR’s initiating or support activity will arrange for the most expeditious delivery or shipment of Category I (Army priority 01, USAF MAC 999) and II PQDR exhibits per disposition instructions received from AMCOM. This activity will coordinate with the proper accountable officer who will arrange for shipment when military aircraft is not available. Containers for exhibits will be clearly, permanently, and conspicuously marked. An example of a shipping label is as follows: CDR, CORPUS CHRISTI ARMY DEPOT, ATTN: SDSCC-QLA, CORPUS CHRISTI, TX 78419-6040, AMCOM SRA 5-3723, PURPOSE CODE A, SUSPECT AIRCRAFT PARTS FOR POSSIBLE TEAR DOWN AND ANALYSIS, SPECIAL HANDLING REQUIRED, EXPEDITE: DA Pamphlet 738–751 AMCOM DMN. REQUIRED DELIVERY DATUM 999.

(2) The shipping instructions will be marked in bright red or international orange on a white background and in a large enough size to allow for ease of visual identification. Markings should be one inch, or larger letters when the size of the container will allow.

(3) When the shipping container is too small for the prescribed markings, a DD Form 2332 (Product Quality Deficiency Report Exhibit) will be used for this purpose. Reflective decals, used for marking PQDR exhibits, are crack and peel and self-adhesive, in sizes 2 1/4- by 2 5/8-inches, 6- by 7-inches, and 12- by 14-inches with a white background and red shipping instructions. These reflective decals are available from AMCOM, AMSAM-MMC-RE-FD. Annotate the PQDR control number in Block 1 of the DD Form 2332 and the Remarks Block of the Materiel Condition Tags and Labels that are attached and shipped with the item and container.

(4) A copy of the DD Form 1348–1A, (Issue Release/Receipt Document) (shipping document) and/or the Government Bill of Lading will be forwarded to the AMCOM action officer indicated in the disposition instructions together with a copy of the PQDR. This documentation is needed to track the exhibit through the Army Supply System. The burden of providing needed documentation lies with the person that prepared the PQDR. Do not assume that your supply support will forward this documentation to AMCOM. When filling out the DD Form 1348–1A, mark Block P, Materiel Condition Code “D.” This will prevent confusion between PQDR exhibits and regular items returned to stock for other reasons. Blocks 57 through 59 will contain project code “QDR.” Blocks 60 and 61 will contain the highest transportation priority authorized. When the DD Form 1348–1A is completed, ensure that your supply support enters the CDD in blocks 62 through 64. For Category I reports use “999” and for Category II use “555.”

(5) Information concerning exhibit disposition instructions or transportation support can be obtained from the AMCOM office working the PQDR or by calling DSN 897-1658, commercial (256) 313-1658 or DATA FAX 746-4904.

e. Tear down analysis.

(1) AMCOM will authorize tear down and analysis at qualified military and/or contractor facilities.

(2) The CCAD or the contractor will notify the AMCOM action officer, indicated in the exhibit disposition instructions, within 5 working days after receipt of the exhibit to expedite the disbursement of blocks 313-1658. An Aircraft Deficiency Report (AECR) or equivalent is not required. The request of exhibits will be sent to AMCOM by electrical message, DA Form 209 (Delay, Referral, or Followup Notice), memorandum, FAX, e-mail, or computer printout. This notice will include a forecasted completion date of the analysis. If the forecasted completion date cannot be met, another notice will be provided to the same addresses advising of the new analysis completion date. If AMCOM fails to receive a forecast date within 14 workdays after CCAD or the contractor receives the exhibit, the AMCOM action officer will contact CCAD or the contractor to make sure that a forecasted date is furnished.

(3) Upon completion of the analysis of each PQDR exhibit, CCAD or the contractor will furnish one copy of the final tear down and analytical report to AMSAM-MMC-RE-FD (QDR), Redstone Arsenal, Huntsville, AL 35808-5000. A copy of the report will also be sent to the proper AMCOM action officer, indicated in the exhibit disposition instructions. The action officer will keep the related PQDR in an active status until a decision for corrective action has been reached and approved; for example, change in technical documentation approved, issue of a formal ECP, Notice of Revision (NOR), or minor alteration approved. After approval of corrective action, the AMCOM action officer will provide the field unit or activity, that prepared the PQDR, with a final reply as to what corrective action will be taken to resolve the fault or failure reported. When no action is to be taken the AMCOM action officer will furnish the person, that prepared the PQDR, with a command letter explaining that the PQDR will be closed and the reason(s).
why. Normally, a decision on Category I PQDRs can be reached within 30 days and Category II PQDRs within 180 days. However, these goals depend upon handling, shipment, tear down analysis, research, and thorough investigation of the deficient item. These processes can delay the decision for proper corrective action and the final reply to the field. In cases like this, the AMCOM action officer will furnish the person that prepared the PQDR, an interim status report and a forecasted date for the final report.

3–4. Reporting initial failure of a stock-funded depot level reparable item

a. Explanation.
 (1) Initial failure. A failure that occurs the first time a SFDLR item is used and the failure is not caused by accident, misuse, improper operation and/or installation, unauthorized repair, or alteration.
 (2) Depot level reparable. An item with a Maintenance Repair Code of D or L or an Automatic Return Code of C, E, R, or S.

b. Processing.
 (1) DO NOT tamper with the item. If you do, you will not get initial failure credit.
 (2) Determine if the initial failure of the SFDLR item meets the criteria for a Category I or II defect. If it does, follow the instructions for completion of a Category I or II Deficiency Report.
 (3) Prepare a SF 368 and explain completely what happened and write "Initial Failure Claim" in block 22. If the PQDR is a Category I and a message was submitted, include the date/time group of the message in block 22.
 (4) Call the AMC Logistics Assistance Office and tell the appropriate MSC LAR that you have an initial failure that needs to be certified. The LAR will work with your activity to solve the initial failure problem (see table 3–8).
 (5) The LAR will verify that the failed item is a depot level reparable (DLR) item.
 (6) The LAR will examine the failed item and determine that it is an initial failure based on what he or she sees, what you tell him or her, and what the documentation shows. If the LAR agrees that it is an initial failure, he or she will write "Yes," enter the date and his or her signature following "Initial Failure Claim" in block 22 of the SF 368.
 (7) Prepare nine copies of the SF 368 (see subpara 3–8d(2) for disposition).
 (8) If the item doesn’t meet the criteria for an initial failure, follow the normal SF 368 process.

3–5. DA Form 2402, Exchange tag

a. Purpose (fig 3–1). Serves as an identification tag.
 b. Use. Used to identify items as needed. For example, receipt for TMDE items needing calibration or for receipt of ALSE.
 c. General instructions.
 (1) The DA Form 2402 has four copies.
 (a) Copy 1 serves as a receipt for the maintenance unit.
 (b) Copy 2 use as needed or as locally prescribed.
 (c) Copy 3 serves as a receipt for support units.
 (d) Copy 4 identifies the item that is tagged and stays with the item until it is issued for use.
 (e) Not all copies may be needed, it depends on the item that is tagged, repair needed, and level of maintenance work.
 d. Disposition. The DA Form 2402 is not used to identify PQDR exhibits.

3–6. DD Form 2332, Product Quality Deficiency Report Exhibit

a. Purpose (fig 3–2). Serves as an identification tag for repair part(s), component(s) and module(s), assemblies, or subassemblies, that have been selected by an AMCOM action office, as a PQDR exhibit.
 b. Use. To identify items as a PQDR exhibit. A separate DD Form 2332 is used for each item of material that has been selected by AMCOM as a PQDR exhibit.
 c. General instructions. The maintenance activity that has the deficient item of material will fill out the two-sided DD Form 2332 and attach it to selected PQDR exhibit. This form will not be used in place of Materiel Condition Tags covered in paragraph 3–20 through 3–26. When a PQDR exhibit is packaged or placed in a container, a DD Form 2332 will also be attached to the outside of the container for easy identification as a PQDR exhibit.
 d. Disposition. (1) The DD Form 2332 will remain attached to the PQDR exhibit and the container, of the exhibit, until completion of the analytical tear down analysis by a depot level maintenance activity (organic or contract support).
 (2) Upon completion of the tear down analysis the form will be destroyed.
 (3) If a tear down analysis is not accomplished, the DD Form 2332 will remain attached to the item until it is repaired, overhauled, or rebuilt.

3–7. DD Form 173/3, Joint Message Form (Category I Deficiency Report).

a. Purpose (fig 3–3). A joint message form to report a Category I PQDR to AMCOM.
 b. Use. Used to report Category I Deficiency Report(s) by electric message. Must be sent within 24 hours of discovering the deficiency. Phone your report to AMCOM then followup with the message. The message is priority and normally UNCLASSIFIED.
 c. General instructions. The information provided must be keyed to the data blocks of the SF 368 (fig 3–4). All items will be completed when the information applies and is available. If a block does not apply, enter “N/A.” Do not delay the report waiting for additional information. AMCOM will acknowledge receipt of the report to the originator, and in most cases provide instructions for exhibit shipment, within 48 hours. AMCOM will provide MACOMs with information copies of all formal message traffic.
 d. Disposition. Messages requesting disposition instructions will be sent to Commander, AMCOM, ATTN: AMSAM-SF, Redstone Arsenal, Huntsville, AL 35898-5000. An information copy will be sent to Commander, USASC, Fort Rucker, AL/CSSC-I/, and to designated MACOMs including ARNGUS.

3–8. SF Form 368, Product Quality Deficiency Report

a. Purpose (fig 3–4). Multiuse form for reporting Category I or II PQDRs.
 b. Use. To report quality deficiencies and make recommendations for improving equipment. The reporting of a failure or unsafe condition is important information. Therefore, preparation and mailing of the SF 368 will not be delayed or withheld. Make sure the report is clear and precise.
 c. General instructions.
 (1) Do not always rely on the CAGE codes listed in the parts manual. Use the shipping and packaging labels for identification of the manufacturing data. The actual manufacturer or repair activity may differ from those listed in the publication. It is imperative to assure the information is as accurate and complete as possible to eliminate delays in processing.
 (2) Refer to figure 3–4 for Category II deficiency report preparation instructions for AMCOM managed items. Information on filling out deficiency reports for other Army surface equipment will be
found in DA Pam 738–750. To determine the NICP Item Manager of Army equipment refer to Federal Log or Army Log and tables 3-1 through 3-7.

(3) Prepare 6 copies of the SF 368 to report the following conditions:
 (a) The PQDR deficiencies in new or almost new products.
 (b) Poor quality workmanship in the manufacture, modification, or conversion process.
 (c) Deficiencies related to design, manufacturing processes and incomplete inspection, maintenance and repair procedures.
 (d) Failure or damage due to corrosion that occurred because of improper selection of finish, material, workmanship, or design.
 (e) Recommendations for improvements to equipment or changes in procedures.
 (f) A component and module or equipment that does not conform to the design or performance procurement specification regarding size, material, hardness, finish, or other aspects of the intended use.
 (g) Reporting problems as requested by the NMP or other elements of AMCOM. When such requests are received at the unit level, the SF 368 is used to validate the extent and severity of the problem.

(4) Two copies will be sent to the AVIM maintenance activity for their review to see if AVIM can resolve the problem or provide AMCOM with additional failure and/or improvement information. The AVIM review is vital for an effective aviation equipment improvement program. It is important that the AVIM activity try to obtain any additional information. When additional information can be provided, it should be annotated in block 22, on the back side, of a SF 368, April 1974, or block 28, of a SF 368 revised October 1985, or on a continuation sheet. Clearly mark the AVIM copy as “DUPLICATE” in the upper right corner, complete blocks 24a and 24b or 25a and 25b to identify the AVIM activity.

(5) Prepare nine copies of the SF 368 when used to report initial failure of a SFDLR item. The supply activity initially turning in the item will enter the ‘Turn-In Document Number’ from DD Form 1348-1A, DD Form 1348-2, or DA Form 2765-1 (Request for Issue or Turn-In) in block 22 of the SF 368 before disposition is made.

(6) The QC office will maintain a log with the control numbers of SF Forms 368 submitted. The log will be used to assign report control number used on the SF Form 368, block 3. The person filling out the SF Form 368 will contact the QC office for the report control number.

d. Disposition.

(1) When used to report a deficiency other than an initial failure of a SFDLR item, dispose of the six copies as follows:
 (a) The original PQDR will be mailed directly to AMCOM within 5 workdays after discovering the defect. Send to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000.
 (b) The person who prepared the PQDR will keep a copy until a satisfactory answer is received.
 (c) If AVIM can provide additional information the “Duplicate Copy” should be forwarded within 15 workdays to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000. Do not forward any copies to AMCOM if no additional information can be provided.
 (d) One copy will be forwarded in the original envelope.
 (e) The last copy of the SF 368 will be attached to the deficient part, component and module, or equipment to assist in its identification as a PQDR exhibit.

(2) Dispose of the nine copies for initial failure of a SFDLR item as follows:
 (a) Mail the original copy to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000.
 (b) The person who prepared the report will keep a copy until a satisfactory answer is received.
 (c) The LAR who verifies the initial failure claim will retain a copy.
 (d) One copy will be filed in the unit QC office.

(e) The remaining five copies of the SF 368 will be sent with the SFDLR item. One copy will be attached to the item and four copies will be placed in a packing list envelope and attached to the shipping container.

(f) Upon receipt of the SFDLR item, the Supply Support Activity (SSA) will remove the copies of the SF 368 from the packing list envelope, annotate the ‘Turn-In Document Number’ generated by their activity in Block 22. One copy will be forwarded to finance for a local credit adjustment as required. The remaining three copies will remain with the reparable item.

(g) Upon receipt of the SFDLR item at Corps Support Command, installation, and/or USP&FO, the remaining copies of the PQDR will be removed from the packing list envelope. The storage activity will keep one copy and send two copies to the SAILS/SARSS/SAMIS activity to grant credit to the SSA or the unit. The SAILS/SARSS/SAMIS ‘Turn-In Document Number’ will be annotated in block 22, on all copies of the SF 368. The SAILS/SARSS/SAMIS unit will file one copy and forward the other copy by express mail to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000.

(h) The copy of the SF 368 attached to the item will remain with the item until repair action is initiated at the depot level.

a. Purpose (fig 3–5 and 3–6). This form has two major purposes.

(1) It is to record faults and deficiencies found by QC technical inspectors during technical inspections of aircraft, aviation associated equipment, and components and modules.

(2) It will be used by AVIM maintenance personnel to record faults and deficiencies on repair parts, components, and modules repaired during AVIM maintenance.

b. Use. The form is used by aviation maintenance personnel, at all levels of maintenance, to record faults and deficiencies on aircraft, aviation associated equipment, and components and modules during technical inspections. It may be used by maintenance personnel during phase/periodic inspections and placed in the phase/periodic inspection checklist in place of the DA Form 2408–13–1 in the logbook. The form will be used by technical inspectors upon completion of scheduled and unscheduled maintenance inspections, maintenance services, and other technical inspections listed below.

(1) The technical inspections are normally completed by quality control personnel during, but are not limited to:
 (a) Acceptance of aircraft, aviation associated equipment, and components and modules into the unit/activity.
 (b) Completion of a scheduled inspection, such as, Phase, Progressive Phase Maintenance (PPM), or Periodic Inspection by the maintenance crew.
 (c) Completion of maintenance work needed for transfer of aircraft from one organization to another, to a depot level maintenance activity (organic or contract support), or to a MAP country.
 (d) When an aircraft is damaged by accident or mishap, combat, or natural phenomena (such as wind, rain, and water) to document faults needing repair.
 (e) When an aircraft enters intermediate and depot level maintenance activities to determine deficiencies and extent of maintenance work needed.
 (f) Completion of depot level maintenance repair, overhaul, rebuild of aircraft, aviation associated equipment, and components and modules.
 (g) During the in-process and final inspection of maintenance work such as, scheduled maintenance inspections, modifications, repair, and unscheduled maintenance.
 (h) When a component, module, or repair part is work ordered to support maintenance for repair, this form will be used by the supporting unit to document in shop initial, in-process, and final inspections of the work performed. All faults or deficiencies discovered during the repair process will be entered on this form. Entries may be made by the mechanic, maintenance supervisor, or technical inspector.

DA PAM 738–751 • 15 March 1999
All armament faults will use code “W.”

Electronic faults that do not affect aircraft readiness and are not of the logbook. Code “A” will be used for all aircraft faults and backside of the form or start a new DA Form 2408–13–3.

Remark in the first open FAULT INFORMATION block on the line of the FAULT/REMARKS section and continue the fault or remark in the next open FAULT INFORMATION block. If the fault or remark will not fit in the last FAULT INFORMATION block, enter “Continued” or “Cont.” on the last line of the FAULT/REMARKS section and continue the fault or remark in the next open FAULT INFORMATION block.

Maintenance actions on DA Form 2408–13–2. Users of ULLS-A/LAS will enter all related maintenance actions will be entered on the DA Form 2408–13–3. Two or more related maintenance actions will be entered on the DA Form 2408–13–2. Users of ULLS-A/LAS will enter all related maintenance actions on DA Form 2408–13–2.

Use as many FAULT INFORMATION blocks as necessary to enter faults, deficiencies, and remarks with no more than one fault or remark per block. If more space is needed to enter a fault or remark in a FAULT INFORMATION block then enter “Continued” or “Cont.” on the last line of the FAULT/REMARKS section and continue the fault or remark in the next open FAULT INFORMATION block. If the fault or remark will not fit in the last FAULT INFORMATION block enter “Continued” or “Cont.” on the last line of the FAULT/REMARKS section and continue the fault or remark in the first open FAULT INFORMATION block on the backside of the form or start a new DA Form 2408–13–3.

The System Code is an ULLS-A requirement and must be used by ULLS-A units and may be used by other units if they so desire. System Codes can be found on the DA Form 2408 in front of the logbook. Code “A” will be used for all aircraft faults and electronic faults that do not affect aircraft readiness and are not reportable under AMSS. Electronic equipment faults that affect aircraft readiness and are reportable under AMSS will use code “E.” All armament faults will use code “W.”

When a fault, deficiency, condition, or incorrect entry is corrected, and components and modules or other repair parts are removed and replaced or replaced, the person making the corrective action will enter the action taken in the CORRECTING INFORMATION block that follows the fault writeup, condition, incorrect entry, and so on, in the FAULT INFORMATION block.

Corrective action taken using words or phrases, such as, “applied,” “tested,” “installed,” “serviced,” “replaced,” “repaired,” “adjusted,” or “erroneous entry” with other brief information (authorized abbreviations are OK) about the action, will be enough to describe the corrective action. If you use one or more words to describe action taken, it will not be considered in error. DO NOT use the word “corrected.”

When an AVIM or Depot component repair shop applies a SOF message, ASAM, TB, or MWO to an uninstalled component, module, or repair part, it will be entered in the FAULT INFORMATION block and the action taken in the CORRECTING INFORMATION block. The DA Form 2408–5–1, if applicable, or DD Form 1574 for the item will be annotated when the SOF, ASAM, or TB is completed.

Upon completion of the corrective action, the person making the corrective action will enter their PID in the PID block. The person who corrects a red dash or red diagonal fault will enter their last name initial over the status symbol. To clear a red “X” or circled red “X” symbol, the completed action must be inspected by the commander or his or her designated representative per paragraph I–9. If the action is found to be satisfactory, the statement “Insp OK” and the inspector’s signature or stamp will be entered on the line following the action taken. If there is no space, the signature entry may be placed above the corrective action taken. The inspector will then enter his or her PID in the PID block, place their last name initial over the status symbol in the FAULT INFORMATION block and change the status symbol in the SYSTEM STATUS block on the DA Form 2408–13, if it applies. If more than one technical inspector performed technical inspections to complete the fault correction, the senior technical inspector performing the inspection will enter his or her PID in the PID block. If a DA Form 2408–13–2 was used, all personnel completing actions on the DA Form 2408–13–2 will enter their PID on the DA Form 2408–13–3. When a scheduled inspection, such as a phase, periodic, or PPM is completed, do not reenter the PIDs from the maintenance checklist. The maintenance supervisor will enter his or her PID certifying completion of the inspection and initial the status symbol. When more than one person completes the corrective action for a fault, other than a phase, periodic or PPM inspection, the senior mechanic, who performed part of the corrective action, will enter the status symbol for entries with a red diagonal or red dash status.

Maintenance man-hours consist of direct “hands-on” man-hours. This time does not include the time expended chasing parts or tools, but does include time expended filling out forms and records. All personnel completing related maintenance actions on a DA Form 2408–13–2 will enter their expended man-hours. When extensive maintenance is performed, such as an engine replacement, and there are not enough manhour blocks available for all the mechanics performing maintenance to enter their man-hours, the maintenance supervisor may consolidate the manhours by category and use his or her PID to enter the man-hours.

When corrective action is taken by an activity other than the parent unit or support activity, the person(s) taking the action will enter his or her unit or activity in the CORRECTING INFORMATION block. Qualified designated representatives may also certify work performed or do one-time inspections on aircraft that belong to another unit, they will enter their unit or activity in the CORRECTING INFORMATION block.

For the entries on the DA Form 2408–13–3 that require other entries on historical forms and records, such as, replacement of reportable items, SOF messages, ASAMs, TBs, MWOS, special inspections, services, and so forth, it becomes the responsibility of the technical inspector that inspected the corrective action to make these entries. When a component and module or repair part with a serial number is replaced the serial number of the removed item will be entered in the FAULT INFORMATION Block and the serial
number of the replacement item will be entered in the CORRECTING INFORMATION Block.

d. Disposition.

(1) DA Forms 2408–13–3 filled out during scheduled or unscheduled maintenance inspections, including those forms filled out by technical inspectors during inspection of aircraft and aviation associated equipment will be attached to the proper or corresponding DA Form 2408–13–1 or other maintenance forms and placed in the 6-month file. When a DA Form 2408–13–3 is added to the Flight Pack, dispose of these forms per subparagraph 2–9d(2).

(2) When DA Form 2408–13–3 is used to document in-shop component or module repair at the AVIM or depot level maintenance, the completed form will be filed in the Production Control office for 6 months after the repair is completed.

3–10. DA Form 2405, Maintenance Request Register.

a. Purpose (fig 3–7). This form is a record of all Job and Work Orders (DA Form 2407) started at the AVUM unit, processed to AVIM or depot for work, and handled by the AVIM and depot maintenance activities.

b. Use.

(1) At AVUM as a record of maintenance requests started and turned into AVIM or depot maintenance (organic or contract support).

(2) As a support maintenance management record, for incoming, ongoing, and completed Job and Work Orders.

(3) At AVUM as a record and control of DA Forms 2407 sent to and returned from contract support maintenance activities.

(4) Units requesting support maintenance from a support activity operating under SAMS will maintain the form.

(5) SAMS-1 automates the DA Form 2405 at the AVUM level. It is used as a consolidated record of all DA Forms 2407 received. The automated form provides a consolidated list of all open work orders, man-hours, and work order status.

(6) Units served by a SAMS AVIM maintenance activity use the manually prepared DA Form 2405 when assigning the ORG WON to the DA Form 2407 for tracking work orders reflecting NMC conditions for equipment. Routine maintenance requests (DA Form 2407) sent to AVIM may also be recorded on the DA Form 2405.

(7) As a source for information such as backlog status reports.

(8) Units under ULLS-A will utilize the automated DA Form 2405 to track work orders.

c. Disposition.

(1) Kept for 6 months after all Job and Work Orders listed on the DA Form 2405 are completed, then destroy.

(2) When used for local budgeting purposes, keep the DA Form 2405 until the budget is complete, then destroy.

(3) You may choose to move open work orders to a new register if the DA Form 2405 is closed out at the end of a calendar or a fiscal year.

(4) Automated DA Form 2405 will be disposed of as follows:

(a) The Production Control copy will be kept in the active tab file until the job is completed.

(b) The receipt copy is kept by the person or unit/activity requesting the work until the job is completed.

(c) The work copy goes to the shop that accomplished the work and is used along with other forms to record the completed work. When the job is completed, the completed work copy is returned to the Production Control office.

3–11. DA Form 2407, Maintenance Request, and DA Form 2407–1, Maintenance Request Continuation Sheet.

a. Purpose (figs 3–8 through 3–11). These forms serve as a request for maintenance support and give valuable information from all levels of maintenance. These forms are the source of information for the MWO program and the Work Order Logistics File (WOLF) data base at the U.S. Army LOGSA, Redstone Arsenal, AL. The WOLF data base furnishes aircraft and weapon system logistic data, such as mean time to repair, mean time between repairs or failure, mean days or hours NMC for AVIM maintenance, and repair parts usage at AVIM for aircraft and selected major components and modules.

b. Use.

(1) At the AVUM unit to—

(a) Request support maintenance, to include:

1. Repairs beyond the AVUM unit's prescribed ability or capacity.

2. Application of MWOs and SOF messages/ASAMs/TBs while in the AVIM activity.

3. Fabrication and/or assembly of items.

4. AVIM level work performed within an AVUM unit when the AVUM unit has an integrated AVIM capability, formerly known as Integrated Direct Support Maintenance (IDSM).

(b) Ask for repair of components and modules, assemblies, and subassemblies in the RX program.

(c) Ask for maintenance support from another activity or supporting unit.

(d) Report battle damage repair actions. AR 750–1 and the specific aircraft battle damage repair TM governs when and how such repairs will be done.

(e) Request status feeder data on component(s) and module(s) repair causing aircraft NMC/PMC condition when it applies.

(f) Tracking of serial number items within SAMs.

(2) At AVIM activities to—

(a) Request maintenance work to repair or apply MWO’s to aircraft, components and modules, and aviation associated equipment in the categories listed—

1. Operational readiness float items.

2. Reparable exchange items.

3. Assigned organic aircraft and mission related equipment.

(b) Record all work done and repair parts used, except common hardware and bulk material.

(c) Report MWOs, ASAM/SOF messages, and TBs applied and/or any One-Time Inspections completed.

(d) Report "Repair and Return to User" work done.

(3) At depot level (organic or contract support) to—

(a) Request maintenance work to apply MWO's and/or repair to aircraft, components and modules, and aviation associated equipment in the categories listed—

1. Assigned organic aircraft and aviation associated equipment.

2. X items or 'Repair and Return to User' maintenance services.

(b) Report MWOs, ASAM/SOF messages, and TBs applied and/or One-Time Inspections completed.

(c) Report "Repair and Return to User" work done and repair parts used, except common hardware and bulk material.

Note. Although the depot maintenance activity may have an automated system to record repair parts or consumables, the repair parts used during 'Repair and Return to User' will be recorded on the DA Form 2407/2407–1. This data is needed for the WOLF data base at LOGSA.

(4) To record intermediate support and depot level maintenance work done under contract maintenance support.

(5) To report MWOs that were applied in the past, but were not recorded on historical records or reported as applied.

(6) To report maintenance actions performed in SAMS units.

c. General instructions.

(1) The supporting maintenance activity doing the work will check Section I entries for accuracy. Block 25, REMARKS, will be used to indicate and clarify nonreceipt of items in Section I, action on the status of equipment, and any information pertinent to the equipment.

(2) Send all maintenance and historical forms that apply to the aircraft, reportable components and modules, and aviation associated equipment in the aircraft to AVIM or depot maintenance support activity. Make an entry in block 26, TECHNICAL REFERENCES, listing these forms.

(3) A separate DA Form 2407 is used to request maintenance support on end item aircraft, reportable components and modules, or aviation associated equipment. You may combine nonreportable items that have the same NSN on a single DA Form 2407. DA Form 2407–1 is used when more room is needed for entries.

(4) The AVUM unit, asking for maintenance support, fills out
Sections I and III and sends all copies of the form with the aircraft, component, and module, or aviation associated equipment to the AVIM activity.

5. The AVIM activity fills in blocks 35a through 35d and if needed, puts a local work order number on the form. Copy I then goes back to the AVUM unit as a receipt for the equipment. The AVUM unit returns Copy I when the equipment is repaired and ready for pickup.

6. If repair parts needed for maintenance are not available when a maintenance request is made, the AVIM activity may defer the maintenance by printing in block 25, REMARKS, “Maintenance request received on (date)” or “owner to return item on (date) for repair” or “owner will be notified upon receipt of part.” Copies 2 through 5 of the Maintenance Requests will be returned to the unit requesting the maintenance. Copy I will be retained by the AVIM activity until the item is returned for repair.

Note. NMCM cannot be deferred. Any time spent awaiting parts at AVIM support will be NMCS.

7. When used to request or report the application of a MWO the following applies:

(a) Army aviation units and activities that are supported by AMCOMs Project OLR contract field team MWO application facilities, will not prepare DA Forms 2407/2407–1 to apply a normal MWO. AMCOM MWO maintenance personnel through the MWO Materiel Fielding Plan (MFP) will contact all unit and intermediate maintenance activities each year to schedule application of MWOs. (Supporting contract field team (Project OLR) address and geographical support areas are shown in table 3–9.)

(b) When a MWO is being applied by the contract field team, an AMCOM NMP representative will oversee each application. The NMP representative will verify the MWO application per AR 750–1 and will sign their name in block 37a, INSPECTED BY. In case the NMP representative is absent from work, the person replacing the NMP representative will monitor, verify, and sign.

(c) Deficiencies and faults found by the contract field team during application of a MWO, will be entered on the aircraft DA Forms 2408–13–1 per paragraph 2–6. The deficiencies and faults that affect safety of flight will be corrected and cleared. The AMCOM NMP representative and owning unit or facility will discuss and approve other needed maintenance work on the aircraft being modified. When needed, the person finding faults or conditions that call for submission of Category I or II PQDRs will prepare a DD Form 173/3 or SF Form 368 per paragraphs 3–7 and 3–8.

(d) The person, normally a QC technical inspector, that represents the unit owning the aircraft being modified will assure that the application of the MWO and the maintenance done is satisfactory per contents of the MWO, MFP, and the -23 TM that applies. The person inspecting the MWO application and other maintenance done will verify this by signing block 38a, PICKED UP BY.

(e) An ORG WON is assigned sequentially from the DA Form 2405 (para 3–10) and will be assigned for the following:

(a) To track AVIM maintenance work done and NMCM time on aircraft, components and modules and other equipment in SAMS units.

(b) When reportable equipment is listed in AR 700–138, or when a command maintenance significant item designated by the local commander, becomes NMC. Also, assign an ORG WON when a nonreportable subsystem of a reportable system causes the system to become NMC.

(c) An ORG WON must be assigned for all NMC equipment, even if it is immediately evacuated to AVIM without any maintenance performed at the unit. This is automatically accomplished for units having ULLS-A.

(d) The sixth position will have a “2” or “3,” depending on whether the equipment is NMC reportable or not. A “2” is used whenever the reportable equipment is listed in AR 700–138 or when a command maintenance significant item, selected by the local commander, becomes NMC. Also assign a “2” when a nonreportable subsystem of a reportable system causes the system to be NMC. A “3” is used if the item is not NMC reportable.

(e) The seventh position will be the year of the decade. For example, the seventh position for each ORG WON assigned in 1990 would be 0.

(f) The last five positions are the sequence number and are unique to each work order. The sequence number is assigned at the unit production control office on the DA Form 2405.

8. Special instructions. When an MWO is issued for any aircraft, associated equipment, and/or component and module to be applied by a field unit or AMCOM contract field team (OLR team) the following instructions apply:

(a) A unit, not under AMCOM’s Project OLR contract field team MWO application program, needing a MWO applied will send all copies of the DA Forms 2407/2407–1 to the activity that will apply the MWO. The aircraft, associated equipment, or component and module normally does not go to the applying activity until MWO kits are on hand. If MWO kit(s) are already on hand, the equipment to be modified will go with the DA Forms 2407/2407–1.

(b) If the MWO kits are not available, send all copies of the DA Forms 2407/2407–1 to the activity applying the MWO, but do not send the aviation equipment. The applying activity will enter in block 25, REMARKS, “Receipt of MWO Request (Date, Name or Initials)” and return Copies 2 through 5 to the requesting unit. The applying activity will keep Copy 1.

(c) When the MWO kits are received the applying activity will notify the unit, requesting MWO application, to send the aviation equipment and all copies of the DA Forms 2407/2407–1.

(d) The person, of the activity applying the MWO, who receives the equipment will enter their first initial and last name in block 35a, ACCEPTED BY, for receipt of the equipment to be modified. The applying activity will then return Copy 1 to the unit that requested the MWO application and will keep Copies 2 through 5.

c. Disposition.

1. Units using the manual recordkeeping system and SAMS units not using the automated DA Form 2407—

(a) RECEIPT COPY 1. Destroy when the aircraft, component and module, or aviation associated equipment is returned to the owning unit.

(b) NMP COPY 2.

1. Normal maintenance requests—handle as directed by the local command.

2. Kept by the contract field team for reporting the MWO application to AMCOM per MWO MFP.

3. MWO application by field unit/activity personnel will send this copy to AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000, within 3 working days after MWO application.

(c) CONTROL COPY 3.

1. For normal maintenance requests and MWO application by the AMCOM contract field team, handle as directed by the local command.

2. For BDAR, mail this copy to the Survivability/Vulnerability Information Analysis Center (SURVIAC), AFFDL/FES/CDIC, Wright Patterson AFB, OH 45433.

3. MWO application by field unit/activity personnel, this copy will be sent to the address shown in the MWO MFP. If a MFP has not been processed and approved, this copy will be disposed of using local command instructions.

(d) ORGANIZATION COPY 4.

1. The AVUM unit that asked for the maintenance support keeps this copy for 180 days after the action is completed, then destroys it.

2. AVUM units may keep DA Forms 2407 that show services (such as, calibration and load/proof test, and so forth) until the next service is done.

3. MWO application by field unit/activity personnel will send this copy to the owning unit of the aviation equipment. It will be
retained by the owning unit until after the DA Form 2408–5 or 2408–5–1 is posted with the MWO application, then destroy.

(c) FILE COPY 5.

1. The AVIM activity or installation maintenance activity keeps this copy for 180 days after the repair is completed, then destroyed.

2. Installation Tables of Distribution and Allowances (TDA) maintenance activities that are subject to efficiency reviews will keep file copies for 1 year.

3. MWO application by the AMCOM contract field team may be disposed of locally as desired.

(2) ULLS-A users. The ULLS-A program provides two hard copies of the maintenance request. The program default is two hard copies, you can print less or more copies as needed.

(a) COPY 1. Signed by the support unit and returned as a receipt. Destroyed when the equipment is returned to the unit.

(b) COPY 2. Retained by the support unit.

a. Purpose. The major purposes for the Maintenance Inspection Checklist are:

(1) To provide scheduled maintenance inspection tasks.

(2) When the tasks are to be accomplished and what conditions are desired.

(3) To record the PID and man-hours of the person that accomplishes each inspection requirement task.

b. Use. AVUM and AVIM maintenance activities, Contractor support activities, and Depot level maintenance activities will use Maintenance Inspection Checklists, for the accomplishment of scheduled maintenance inspections (Phase, Periodic, PMS, PPM, or Combat Phase).

c. General instructions. Maintenance Inspection Checklists are to be revised and made compatible with the recently designed forms and records. Until the inspection checklists are changed or automated the following instructions apply:

(1) Use a new inspection checklist each time an aircraft undergoes a Phase, Periodic, PPM, PMS or Combat Phase inspection.

(2) The inspection checklist is interwoven to the DA Form 2408–13–1 or 2408–13–3. Faults and deficiencies found during the inspection will be recorded on DA Form 2408–13–1 or 2408–13–3. Faults and deficiencies found during the technical inspections will be recorded on the DA Form 2408–13–3. DA Forms 2408–13–3 completed during the scheduled maintenance inspection can become part of the Logbook Flight Pack or remain in the Maintenance Inspection Checklist.

(3) The inspection checklist can be separated for distribution to the maintenance crew, including allied shops. Do not reenter any faults, remarks or deficiencies from the DA Forms 2408–13–1, 2408–13–3, 2408–14–1, or any special inspections, services, or replacements from DA Form 2408–18 to the inspection checklist.

(4) All faults and deficiencies discovered during the inspection are to be recorded on DA Form 2408–13–1 or 2408–13–3. Related maintenance actions to correct these faults or deficiencies will be recorded on DA Form 2408–13–2. Precede all faults and deficiencies with the inspection number and area.

(5) For units under ULLS-A or LAS enter the fault or deficiency on a DA Form 2408–13–1.

(6) During the accomplishment of a scheduled inspection, it may be necessary to remove a repair part, component, assembly, etc., for repair, inspection, service or other maintenance actions. When the item is sent to the supporting AVIM unit or in some units, the collocated allied shops for maintenance actions, a DA Form 2407 is used for the work needed. A DA Form 2408–13–3 is initiated by the AVIM level technical inspector to perform the initial inspection on the repair part, component, etc. The DA Form 2408–13–3 will accompany the item to the shop for corrective action on the fault or completion of the maintenance action. A DA Form 2408–13–2 will be used when related maintenance actions are needed to correct the fault or complete the maintenance action.

(7) Upon completion of the scheduled maintenance inspection and before accomplishment of the required test flight, assemble all logbook, maintenance, and historical forms and records, including the inspection checklist annotated during the scheduled inspection. Accomplish a form and records check, using the Maintenance Records Checklist in table 3–9, to ensure that proper and accurate entries have been made and all forms and records are present, completed and updated before releasing the aircraft from maintenance.

(8) All DA Forms 2408–13–1 and associated DA Forms 2408–13–2 used to correct faults or deficiencies discovered during the inspection will become part of the Logbook Flight Pack and be numbered as pages in the flight Pack. DA Forms 2408–13–3 and associated DA Forms 2408–13–2 used for faults or deficiencies discovered during the inspection may become part of the Flight Pack or part of the inspection checklist and numbered as supplements to the inspection checklist.

(9) All forms completed during the inspection will be made available to Quality Control and Test Flight personnel, for a technical inspection, before the test flight. A “Zero Time Close-Out” will be accomplished before the test flight. Retain the inspection checklist in the maintenance office after the test pilot reviews all logbook and related maintenance forms and records. After completion of the test flight, attach the closed out Flight Pack to the maintenance inspection checklist and file in the 6-month file per paragraph 2-9.

d. Special instructions. Disregard preparation instructions for forms and records printed in the current maintenance inspection checklist and use the following:

(1) Complete the heading information on each page of the checklist.

(2) When the maintenance inspection checklist requires aircraft disassembly, to complete an inspection requirement, enter the maintenance related actions on a DA Form 2408–13–2. Enter “2408–13–2” and page number of the form in the FAULT AND/OR REMARKS block on the inspection checklist. This will show that a DA Form 2408–13–2 was initiated to record the disassembly.

(3) If no faults were found relating to the inspection the person who completed the inspection task will enter “Insp OK” in the ACTION TAKEN block and put their PID in the INITIAL block of the checklist.

(4) When a deficiency or fault related to the inspection requirement task is discovered, enter “2408–13–1” or “2408–13–3” and page number of the form in the FAULT AND/OR REMARKS block and enter “Insp Compl” in the ACTION TAKEN block and their PID in the INITIAL block of the checklist.

(5) Completion of MOCs and MTFs will be recorded per this paragraph and TM 1–1500–328–23.

(6) Complete the DA Form 2408–18, Special Inspections, accomplished in conjunction with the maintenance inspection checklist as follows.

(a) For units under ULLS-A or LAS all DA Form 2408–18, Special Inspections will be entered and completed on the DA Form 2408–13–1.

(b) Units maintaining forms and records the manual way may list all the DA Form 2408–18, Special Inspections, accomplished in conjunction with the maintenance checklist on a DA Form 2408–13–2 with only one write up for special inspections on the DA Form 2408–13–1.

(7) Special inspection included as a task in the maintenance checklist.

(a) For units under ULLS-A or LAS, if a DA Form 2408–18 inspection requirement is listed as an inspection task enter “Insp Compl” in the ACTION TAKEN block of the inspection checklist and check the DA Forms 2408–13–1 to find if the inspection is listed to be completed, if so enter the corrective action. If the inspection is not already entered on a DA Form 2408–13–1 make the entry and do the corrective action. Double check to make sure the date on the DA Form 2408–18 gets updated.

(b) For units maintaining forms and records the manual way, do the inspection and enter “Completed” or “Compl” and the date in the ACTION TAKEN Block of the inspection checklist. The inspection does not have to be listed again on a DA Form 2408–13–1,
a. Disposition. The completion of a phase, periodic, or PPM inspection will be recorded on the aircraft DA Form 2408-15. After completion of the scheduled maintenance inspection, required general test flight, and at the end of the mission day, the completed paper work (DA Forms 2408-13, 2408-13-1, 2408-13-2, 2408-13-3, and Maintenance Inspection Checklist) that documented the inspection will be filed in the aircraft 6-month file and maintained the same as the rest of the 6-month file.

3–13. DA Form 2410, Component Removal and Repair/Overhaul Record (RCS CSGDL-1052 (R3)).

a. Purpose. DA Form 2410 provides a method of recording and reporting maintenance data on selected aircraft components and modules. It provides commanders and maintenance managers at all levels with important data needed for effective management of these components and modules. During analysis, the data recorded on the DA Form 2410, is utilized with other maintenance data collected from all levels of maintenance, for controlling TBO and MAOT (See the applicable TM-23 for selected “Time Change Components,” “Retirement Life Components,” and “Condition Components.”) Failure to complete DA Form 2410 correctly on components and modules listed in TB 1-1500-341-01 may cause an item to be scrapped, overhaul, or prematurely rebuilt. Incorrect reporting could permit the use of a critical item beyond its prescribed MAOT. This could increase the danger of an in-flight failure. Aircraft components and modules listed in TB 1-1500-341-01 will be referred to throughout this pamphlet as “reportable items.” Data recorded and reported on this form includes, but is not limited to, identification and location of the item, current serviceability status, failure description, and the major item of equipment the reportable item is installed on or removed from.

b. Use.

(1) The DA Form 2410 is a three-copy form in four sections, to provide historical data on removals, repairs, overhauls or rebuilds, installations and gains/losses to the Army inventory. Previous editions of the DA Form 2410 will no longer be used, including the AMSA/M-M (Test) 2410 Form (Component Removal and Repair/Overhaul Record), 1 Sep 87; DRSTS-M Form 2410, 1 Mar 83; and DA Form 2410, May 81. Existing data on older forms will be reentered to a current three copy form (cross out the control number on the new form and enter the control number from the old form). Do not prepare a DA Form 2410 when a serviceable, reportable item is removed to aid in other maintenance, and will be reinstalled on the same component or aircraft.

(2) DA Form 2410 is divided into four sections —

(a) Section I—Identification. This section is used to identify the reportable item and to provide necessary usage data, and failure codes. Section I is the only section that appears on all three copies of the form. Make sure Copy 3 is legible when the form is completed. Remove carbons before mailing.

Note: The serial number required in block 4 for reportable items is a very important piece of data. Without the serial number, the form is useless. If the serial number generated by the program.

(b) Section II—Removal Data. This section is used to identify the aircraft, component, or assembly from which the reportable item was removed. It also identifies the unit or activity that removed the item and the unit or activity where the item was shipped. Appears on Copy 1.

(c) Section III—Repair/Overhaul/Gain Data. This section is used to identify the organizations that test, repair, modify, overhaul, or rebuild the reportable item. If the item is a gain to the inventory, record the reason for the gain in this section. Appears on the front side of Copy 2. On the back side of Copy 2, list the parts replaced during overhaul or repair and reason for failure (see failure code tables at the end of chapter 1).

(d) Section IV—Installation/Loss Data. This section is used to identify the aircraft, component, or assembly on which the reportable item is installed and identifies the organization that installed the item. It provides the usage data needed to prepare DA Forms 2408-16 and 2408-16-1. It also shows if the item is a loss to the inventory, and the reason for the loss. Appears on Copy 3.

(3) Prepare the DA Form 2410 when—

(a) A reportable item is first placed in the Army inventory (para 3-14). This includes installed or uninstalled items and reportable items received from MAP countries, other (non-Army) Government agencies, departments, manufacturers, and military services when reportable items are used or may be used by the U.S. Army.

(b) A serviceable or an unserviceable reportable item is removed from an aircraft or component and the item is not reinstalled on the same aircraft or component.

Note. Only one DA Form 2410 is prepared for the item removed by the using organization or support unit. For example, when a T53-L-13B engine is removed from an aircraft, only one DA Form 2410 for the engine is needed at time of removal. This process holds true even though the engine has other installed reportable items.

(c) A serviceable or unserviceable reportable item is removed from an aircraft or component for repair, overhaul, or rebuild.

(d) The serviceability status of an uninstalled reportable item changes for any reason.

(e) The PN, NSN, and/or SN of a reportable item is changed as a result of a MWO or other directive (fig 3-20).

(f) A reportable item is disposed of through the DRMO.

(g) An item is lost to the Army inventory through FMS or MAP.

(1) Complete all copies of the DA Form 2410 using black or blue ball point pen or typewriter. Slash all zeros on the form to distinguish the zeros from the letter “O.”

(2) A “Corrected Copy” DA Form 2410 will be submitted when you discover that a DA Form 2410 was mailed to AMCOM with incorrect information. Prepare a new form using the copy 1, 2, or 3 that corresponds with the control number of the incorrect DA Form 2410, line out the control number and enter the control number of the incorrect DA Form 2410 above the lined out control number. Complete the “Corrected Copy” form with the correct information. Enter “Corrected Copy” and the block numbers that contained the incorrect information in the REMARKS block of the DA Form 2410 and mail to AMCOM. Other copies of the DA Form 2410 in your possession may require updating. For example, a DA Form 2410, Copy 1 was sent to AMCOM with a wrong ‘time since new.’ Submit a Copy 1 “Corrected Copy” showing the correct ‘time since new’ and correct the original Copies 2 and 3 by lining out the incorrect ‘time since new’ and entering the correct ‘time since new.’ Do not mark Copies 2 and 3 of the DA Form 2410 “Corrected Copy.” Destroy the remaining copies 2 and 3 that the copy 1 “Corrected Copy” was attached to.

(3) A preprinted control number is located in the upper left-hand corner of the DA Form 2410. If a new form is needed because the old form is damaged or destroyed, line out the control number on the new form and write in the control number of the old form. Do not mark the DA Form 2410 as a “Corrected Copy.” When a manually filled out DA Form 2410 is entered into an automated program such as ULLS-A, LAS or the Automated DA Form 2410 program, the control number of the manually filled out DA Form 2410 will be used in the automated program. Do not use the control number generated by the program.

(4) Reportable items sent to any supply or maintenance activity must have the DA Form 2410 attached. Otherwise, you will be contacted to provide the missing form or to provide the data needed to prepare a new form.

(5) A DA Form 2410 will be prepared for each component and module identified in TB 1-1500-341-01.

(6) Words and acronyms such as “new” “unk” or “N/A” will not be used on this form because of automation tasks done at the national level.

(7) Condition status and other important data on the item, after repair, overhaul, rebuild, or inspection as indicated in blocks 6
through 10 and 36, on Copies 2 and 3, will be annotated on the DD Form 1574/DD Form 1574-1 attached to the reportable item.

(8) DA Form(s) 2410 generated by an automated program, such as LAS, Automated DA Form 2410 program (Version 3.4 or 3.5) or any other program approved for use by AMCOM, will be migrated to AMCOM weekly.

(a) Information may be migrated by transferring the data to a floppy disk and mailing the disk to AMCOM or through electronic migration using the AMCOM Data Management Support Bulletin Board System (BBS).

(b) The AMCOM Data Management Support BBS may be linked through File Transfer Protocol (FTP) across the Internet or by dial up modem. FTP to 136.256.224.141, Login as “Guest.” To access by modem, set your modem software for eight bits, no parity, one stop bit and 9600, 2400 or 1200 baud, then dial DSN 697-9057 or commercial (256) 313-9057. Send 2410 data to area six.

(c) DA Form(s) 2410 generated by ULLS-A will not be electronically migrated to AMCOM until the ULLS-A program is modified to allow electronic migration. The forms will have to be printed and mailed to AMCOM.

(d) Data migrated to AMCOM must be in the LAS or Automated DA Form 2410 Program (Version 3.4 or 3.5) format unless previous coordination has been made with AMSAM-MMC-RE-FD.

(9) A loss to the Army inventory DA Form 2410 will be submitted by the losing unit for components leaving the Army inventory. Components that are shipped to DRMO, FMS, MAP, other Government agencies or civilian organizations require submission of a loss to the Army inventory DA Form 2410.

(a) When an aircraft is lost to the Army inventory, do not submit a loss to the Army inventory DA Form 2410 for each installed component. These losses to the Army inventory DA Forms 2410 will be completed by AMCOM, follow the procedures in paragraphs 1-17 through 1-20 for loss to the Army inventory of an aircraft.

(b) Do not submit a loss to the Army inventory DA Form 2410 for H-60 helicopter components shipped to the U.S. Air Force or installed on U.S. Air Force HH-60 and MH-60 aircraft. Data for components installed on this aircraft are maintained in the AMCOM DA Form 2410 data base. Follow the same procedures for submission of DA Forms 2410 for U.S. Air Force HH-60 and MH-60 helicopter components that are used for Army aircraft.

(10) Paragraphs 3-14 through 3-19 provide specific preparation and disposition instructions for which the DA Form 2410 is used. The various instructions and cycles are:

(a) Paragraph 3-14, Gains to Inventory.

(b) Paragraph 3-15, Normal Removal, Repair, Overhaul/Rebuild and Installation.

(c) Paragraph 3-16, Changes from Serviceable to Unserviceable Status for Uninstalled Items.

(d) Paragraph 3-17, PN/NSN/SN Changes.

(e) Paragraph 3-18, Removal of Serviceable Items for Controlled Exchange.

(f) Paragraph 3-19, Losses to Inventory.

d. Disposition.

(1) “Corrected Copies” and completed copies of DA Form 2410 will be mailed, on the date each copy is completed, to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000. Do not wait until you have other DA Forms 2410 to mail.

(2) Place the completed copies, that will accompany the component and module, in a waterproof envelope (NSN 8105-00-183-6958) that is clearly marked with the words “IMPORTANT PAPERS INSIDE DO NOT DESTROY.” If this envelope is not available a suitable clear plastic envelope with a closure feature, that is, top folded and secured with staples or zip lock seals may be used with a paper insert placed inside with BOLD PRINT stating: “IMPORTANT PAPERS INSIDE DO NOT DESTROY.” The important part is that the envelope must protect the documents from the elements and must be securely attached to the component. When any of the following applies, they will be placed in the envelope with the DA Form 2410: DA Forms 2408-5-1, 2408-15, 2408-16, 2408-16-1, 2408-19, 2408-20, and a copy of the Category I or Category II PQDR.

3–14. DA Form 2410, Gains to Inventory.

a. Preparation. Refer to figure 3–14 for instructions.

(1) The manufacturer or contractor will fill out and sign DA Form 2410 per the Contract Data Requirement List (CDRL) of their contract(s) on reportable items. Signatures on the form certify status or condition of the item.

(2) When an item(s) comes directly from the manufacturer without a DA Form 2410, the receiving unit shall fill out Copies 2 and 3 and advise AMCOM that the item(s) were received without documentation and provide information as to the origin of the shipment.

(3) When the gain of an item(s) is a result of an action other than (1) and (2) above, initiate Copies 2 and 3, filling in blocks 1 through 19 and 39. Also, include the proper gain code in block 40 on Copy 2.

(4) When a gain of an unserviceable item is being reported, initiate Copies 2 and 3, filling in blocks 1 through 19. On Copy 2, block 40 enter the proper gain code. This also applies to serviceable and unserviceable item(s) returned from outside the Army inventory; such as, MAP or FMS countries. If the item is gained by an organization or unit different from the repair or overhaul facility, the organization will initiate the copies 2 and 3, filling out blocks 1 through 19 entering the proper gain code in block 40, and entering a statement (why the item is being gained, where it came from and other pertinent information), then the person making the entry will sign and put the date in the REMARKS block.

b. Disposition.

(1) For a normal gain of a serviceable item —

(a) Copy 1 destroy.

(b) Copy 2 mail to AMCOM.

(c) Copy 3 will stay with the item until it is installed.

(2) For an item returned from outside the Army inventory —

(a) Copy 1 destroy.

(b) Copy 2 will remain with the item till overhauled, then mail to AMCOM.

(c) Copy 3 stays with the item until it is installed.

a. Preparation. Refer to figures 3–15 through 3–18 for preparation instructions. The selection of failure codes that best describes the reason for failure or removal, to achieve a maintenance action, is very important when the DA Form 2410 is filled out. The failure codes in alphabetical sequence are listed in table 1–2 and numerical sequence in table 1–3. The original failure code in block 10 is selected by unit level maintenance personnel and can change one or more times after removal and during the maintenance and repair process of the reportable item. After repair, inspection, overhaul, or rebuild, personnel responsible for filling out the form will select the actual failure code from table 1–2 or 1–3 and put it in Copy 2, block 43. Then, a line will be drawn through the original failure code on Copies 2 and 3, block 10, and failure code “999” entered. The serviceability status of the item can be found on Copies 2 and 3, block 39 and on the materiel condition tag/label attached to the reportable item.

b. Disposition.

(1) Copy 1 will be filled out by the organization that removed the item and sent to AMCOM.

(2) Copy 2 will be sent to AMCOM as follows:

(a) The maintenance activity will send the copy to AMCOM, after repairing, overhauling or rebuilding the item.

(b) When an item is received and thought to be unserviceable, but is found to be serviceable, the activity that determined the item unserviceable will complete Copy 2 and send to AMCOM.

(3) Copy 3 will be sent to AMCOM by the organization that installs the item.
3–16. DA Form 2410, Changes from Serviceable to Unserviceable Status for Uninstalled Items.

a. Preparation. When a serviceable, uninstalled item becomes unserviceable for any reason, the owning activity must fill out the existing Copy 3 and prepare a new set of DA Form 2410. Refer to fig 3-19.

b. Disposition.

(1) Copy 3 that was with the item when the item was found to be unserviceable will be filled out by the owning activity and sent to AMCOM.

(2) New set of DA Form 2410 will be started —
 (a) Copy 1 destroy.
 (b) Copy 2 will be filled out and sent to AMCOM by the maintenance activity that repairs the item.
 (c) Copy 3 will be sent to AMCOM by the unit/activity that installs the item.

3–17. DA Form 2410, NSN/PN/Serial Number (SN) Changes.

a. Preparation. Refer to figures 3-20 and 3-21 for instructions.

(1) When the NSN, PN, and/or SN of an uninstalled item changes because of an MWO, or other directive, the activity doing the maintenance on the reportable item will complete Copy 3 of the existing DA Form 2410 and prepare a new set of DA Forms 2410.

(2) When the NSN, PN, and/or SN of an installed item changes because of an MWO or other directive, the activity doing the maintenance will fill out the required DA Forms 2410.

b. Disposition.

(1) For uninstalled item dispose of DA Form 2410 as follows:
 (a) If the existing set of DA Forms 2410 with the uninstalled item has a Copy 2, destroy it.
 (b) Destroy Copy 1 of the new set of DA Forms 2410.
 (c) Send the old Copy 3 and new Copy 2 to AMCOM after completion of the MWO.
 (d) Copy 3 of the new form remains with the item until installed.

(2) For installed item dispose of DA Form 2410 as follows:
 (a) Send copy 1 of the first set of DA Forms 2410 to AMCOM.
 (b) Destroy Copy 2 of the first set of forms and Copy 1 of the second set of forms. Send Copy 2 of the second set of forms to AMCOM.
 (c) Send Copy 3 of the first and second set of forms to AMCOM.

3–18. DA Form 2410, Removal of Serviceable Reportable Items for Controlled Exchange.

a. The term “Controlled Exchange,” as used here, is any removal of a serviceable reportable component and module from one aircraft for installation on another aircraft. This is done within the same organization or in support of another organization.

b. When “Controlled Exchange” of a serviceable reportable item is necessary, prepare Copies 1 and 3 of DA Form 2410 as shown in figures 3-22 and 3-23. Make sure that you also update DA Form 2408-16 or DA Form 2408-16-1, to keep your usage data current. Removal of an unserviceable component or module from an aircraft for installation on another aircraft is not considered “Controlled Exchange.” This is considered to be a removal and installation of an unserviceable item. Blocks 10 and 39 of the DA Form 2410 must reflect the condition of the item.

c. Disposition.

(1) Copy 1 is sent to AMCOM by the organization that removes the item.

(2) Copy 2 destroy.

(3) Copy 3 is sent to AMCOM by the organization that installs the item.

3–19. DA Form 2410, Loss to Inventory.

a. Preparation. Refer to figure 3-24 and 3-25 for instructions.

(1) To report the loss, of an uninstalled item, to the inventory complete Copy 3.

(2) To report a loss, of an installed item, to the inventory initiate a new set of DA Forms 2410 and complete Copy 3.

(3) When the loss to the Army inventory is a result of conversion or redesignation of the item NSN, PN, and/or SN through modification, follow the procedures in paragraph 3-17.

(4) The mutilation statement required by TM 1-1500-328-23, Section IX, subparagraph 9-8a will be in the Copy 3, REMARKS block. The statement must appear verbatim and all signatures required by TM 1-1500-328-23 must be in the REMARKS block. This also applies to electronically generated 2410s. In place of a signature type your name.

b. Disposition.

(1) Copy 1 for an installed item send to AMCOM.

(2) Copy 2 destroy.

(3) Copy 3 for installed and uninstalled items remains with the item until mutilation is complete then send to AMCOM.

a. Purpose. DOD Materiel Condition Tags/Labels are used to show the identity and condition of Army parts, components, assemblies, kits, special tools, ground handling and support equipment, and other items used in aircraft units to accomplish operational missions. The DOD tags/labels are used along with the other forms, records, and tags described in this pamphlet and TM 1-1500-328-23.

b. Use.

(1) Completed Materiel Condition Tags/Labels will be securely attached to all uninstalled or stored aeronautical and air delivery items. When items are packaged or stored in a container, attach a duplicate tag-label to the outside of the container. Use waterproof blue or black ink on Materiel Condition Tags/Labels. Make sure the tag will be protected during handling operations or while exposed to outside elements, such as sun, rain, snow, sand, and so forth. No substitute will be used when a materiel condition tag/label is required. When serviceable components; such as, seats, panels, and stanchions, are removed from the aircraft and temporarily stored to facilitate maintenance, a DD Form 1574, Serviceable Tag, does not need to be completed for each item. A plain Manila tag may be used to mark these items. Each tag must have, as a minimum, the last three digits of the aircraft serial number entered on the tag. This does not delete the requirement to tag unserviceable items, items in storage, or items turned into supply activities.

(2) Attach a completed Materiel Condition Tag/Label to all items sent out for repair or modification as well as items turned in for special inspections; for example, survival kits, anti-exposure coveralls, helmets and oxygen mask.

(3) Materiel Condition Tags/Labels are not needed for small common hardware items in a serviceable condition.

(4) Separate parts of assemblies that are listed as single items of supply will be tagged when separated from the assembly.

Note. Retagging of new items is not needed as long as the item received is in the unopened original manufacturer's package with the manufacturer's tag/label attached according to the contract and military specifications. This item can be assumed to be new and serviceable. Retagging is mandatory if a contractor is required to return an unserviceable item to Army storage and the item does not have a tag/label.

c. Items needing DOD materiel tags and labels—

(1) All uninstalled serviceable items (not in original, unopened, manufacturer's package).

(2) All uninstalled unserviceable items.

(3) All new and used items listed in TB 1-1500-341-01 that require reporting on DA Form 2410.

(4) All items that show signs of corrosion or deterioration.

(5) All items that have latent defects.

(6) Aviation associated equipment that becomes unserviceable.

(7) All items that require Non-Destructive Testing (NDT).

(8) All items that the condition or identification has been changed—
 (a) By direction of higher authority.
 (b) As a result of in-storage inspections.
 (c) By MWOs, TBs, SOF messages, or ASAMS.
 (d) By technical publication changes.
 (e) If aeronautical equipment identification is lost or defaced.
 a. Supply condition codes are used to classify materiel. They identify—
 (1) The degree of serviceability, condition, and completeness in terms of readiness for issue and use.
 (2) Actions underway to change the status of the materiel.
 b. Appendix C, lists the Supply Condition Codes needed to prepare the Materiel Condition Tags/Labels covered in this manual. Refer to AR 725-50 for a full explanation of these condition codes.

3–22. DD Form 1574, Serviceable Tag-Materiel, and DD Form 1574-1, Serviceable Label-Materiel, (Yellow).
 a. Purpose. These forms are used to identify serviceable materiel, (See fig 3-26) —
 (1) Condition Code “A” - Serviceable (issuable without qualification).
 (2) Condition Code “B” - Serviceable (issuable without qualification).
 (3) Condition Code “C” - Serviceable (priority issue).
 b. Disposition. Dispose of these forms as directed by the unit/activity quality control supervisor. Any DD Form 1574 or 1574-1 attached to any empty reusable container will be removed and destroyed before the container is reused. When this form is used by AVIM units to identify serviceable Aviation Night Vision Goggles, destroy the tag after the DA Form 2408-30 has been updated.

 a. Purpose. These forms are used to identify suspended materiel, (See fig 3-27) —
 (1) Condition Code “J” - Suspended (in stock).
 (2) Condition Code “K” - Suspended (returns).
 (3) Condition Code “L” - Suspended (litigation).
 (4) Condition Code “M” - Suspended (in work).
 b. Disposition. Dispose of these forms as directed by the unit/activity quality control supervisor. Any DD Form 1575 or 1575-1 attached to an empty reusable container will be removed and destroyed before the container is reused.

3–24. DD Form 1576, Test/Modification Tag-Materiel, and DD Form 1576-1, Test/Modification Label-Materiel, (Blue).
 a. Purpose. These forms are used for the following: (See fig 3-28)
 (1) To identify materiel in condition code “D” - Serviceable (test/modification).
 (2) To identify AOAP exhibits being returned to a depot level maintenance activity for consideration for tear down analysis.
 (3) By AVIM units to identify Aviation Night Vision Goggles requiring a distortion evaluation after completion of maintenance.
 (4) To identify items that require Non-Destructive Testing (NDT).
 b. Disposition. Dispose of these forms as directed by the unit/activity quality control supervisor. Any DD Form 1576 or 1576-1 attached to any empty reusable container will be removed and destroyed before the container is reused. When used for Aviation Night Vision Goggles, destroy this form after a successful distortion evaluation has been completed and documented on the DA Form 2408-15 for the goggles.

 a. Purpose. These forms are used to identify materiel, condition code “H” - Unserviceable (condemned) (see fig 3-29)
 b. Disposition. Dispose of these forms as directed by the unit/activity quality control supervisor. Remove and destroy any DD Form 1577 or 1577-1 attached to an empty reusable container before the container is reused.

 a. Purpose. These forms are used to identify unserviceable materiel (see fig 3-30).
 (1) Condition Code “E” - Unserviceable (limited restoration).
 (2) Condition Code “F” - Unserviceable (reparable).
 (3) Condition Code “G” - Unserviceable (incomplete).
 b. Disposition. Dispose of these forms as directed by the unit/activity quality control supervisor. Remove and destroy any DD Form 1577-2 or 1577-3 attached to an empty reusable container before the container is reused.
Table 3–7
Logistic Assistance Offices and Logistic Assistance Representatives1

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCOM, AL</td>
<td>CMMDR, AMCOM</td>
<td>DSN 897-1568</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSAM-MMC-RE-LV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35898-5000</td>
<td></td>
</tr>
<tr>
<td>FT BRAGG, NC</td>
<td>USA LAO</td>
<td>DSN 236-2731/2679/2696</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-COS</td>
<td>(910) 396-2731/2679</td>
</tr>
<tr>
<td></td>
<td>BLDG MT-6726</td>
<td>Datafax DSN 236-1501</td>
</tr>
<tr>
<td></td>
<td>FT Bragg, NC 28307-5000</td>
<td></td>
</tr>
<tr>
<td>FT CAMPBELL, KY</td>
<td>AMCOM</td>
<td>DSN 635-5901/3325</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-COS</td>
<td>(502) 798-5901/3325</td>
</tr>
<tr>
<td></td>
<td>BLDG 8000</td>
<td>Datafax DSN 635-3730/7194</td>
</tr>
<tr>
<td></td>
<td>FT Carson, CO 80913-5025</td>
<td></td>
</tr>
<tr>
<td>FT CARSON, CO</td>
<td>USA LAO (AMCOM)</td>
<td>DSN 691-0250</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-CA</td>
<td>(719) 526-0250</td>
</tr>
<tr>
<td></td>
<td>BLDG 8000</td>
<td>Datafax DSN 691-5196</td>
</tr>
<tr>
<td>FT DRUM, NY</td>
<td>USAMC LAO</td>
<td>DSN 341-5450</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-DR</td>
<td>(315) 772-4169</td>
</tr>
<tr>
<td></td>
<td>18 Lewis Ave.</td>
<td>Datafax DSN 341-9247</td>
</tr>
<tr>
<td></td>
<td>FT Drum, NY 13602-5039</td>
<td></td>
</tr>
<tr>
<td>FT HOOD, TX</td>
<td>USA LAO (1st Cav)</td>
<td>DSN 738-5377</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-FC-1C</td>
<td>(817) 286-5377</td>
</tr>
<tr>
<td></td>
<td>FT Hood, TX 76544-5056</td>
<td>Datafax DSN 738-1228</td>
</tr>
<tr>
<td>FT HOOD, TX</td>
<td>USA LAO (4th ID)</td>
<td>DSN 738-3973</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-4ID</td>
<td>(817) 286-3973</td>
</tr>
<tr>
<td></td>
<td>BLDG 4421</td>
<td>Datafax DSN 737-9501</td>
</tr>
<tr>
<td>FT HOOD, TX</td>
<td>USA LAO (13th COSCOM)</td>
<td>DSN 737-0936</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-FC</td>
<td>(817) 287-0936</td>
</tr>
<tr>
<td></td>
<td>Bldg 4410</td>
<td>Datafax DSN 737-9501£</td>
</tr>
<tr>
<td></td>
<td>FT Hood, TX 76544-5056</td>
<td></td>
</tr>
<tr>
<td>FT LEWIS, WA</td>
<td>USA LAO</td>
<td>DSN 357-5955</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-C-PK</td>
<td>(206) 967-5955</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 33386</td>
<td>Datafax DSN 357-5960</td>
</tr>
<tr>
<td></td>
<td>FT Lewis, WA 98433-0386</td>
<td></td>
</tr>
<tr>
<td>FT MCPHERSON, GA</td>
<td>C, AMCOM CONUS Branch</td>
<td>DSN 367-6273</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSAT-I-LAC,</td>
<td>(404) 669-6273</td>
</tr>
<tr>
<td></td>
<td>Bldg 200</td>
<td>Datafax DSN 367-6750</td>
</tr>
<tr>
<td></td>
<td>FT McPherson, GA 30330-6000</td>
<td></td>
</tr>
<tr>
<td>FT POLK, LA</td>
<td>USA LAO</td>
<td>DSN 863-2717/2729</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLA-C-PK</td>
<td>(318) 531-2717/2729</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 3928</td>
<td>Datafax DSN 863-4811</td>
</tr>
<tr>
<td></td>
<td>FT Polk, LA 71459-0928</td>
<td></td>
</tr>
<tr>
<td>FT WAINWRIGHT, AK</td>
<td>USA LAO</td>
<td>DSN 317 353-7734/6903(907)</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLA-CHA</td>
<td>353-7734/6903</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 35004</td>
<td>Datafax DSN 353-6347</td>
</tr>
<tr>
<td></td>
<td>FT Wainwright, AK 99703-0004</td>
<td></td>
</tr>
<tr>
<td>FT RUCKER, AL</td>
<td>USA LAO</td>
<td>DSN 558-3406/2526</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLA-F-RU</td>
<td>(334) 255-3406/2526</td>
</tr>
<tr>
<td></td>
<td>Bldg 601, L Ave.</td>
<td>Datafax DSN 558-9088</td>
</tr>
<tr>
<td></td>
<td>FT Rucker, AL 36362-5000</td>
<td></td>
</tr>
<tr>
<td>SAVANNAH, GA</td>
<td>USA LAO</td>
<td>DSN 971-6309</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-ST(H)</td>
<td>(912) 352-6309</td>
</tr>
<tr>
<td></td>
<td>Bldg 1128, HAAF</td>
<td>Datafax DSN 971-5203</td>
</tr>
<tr>
<td></td>
<td>Savannah, GA 31409-5194</td>
<td></td>
</tr>
<tr>
<td>FT KNOX, KY</td>
<td>USA LAO</td>
<td>DSN 464-5767/3953</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-F-KN-157</td>
<td>(502) 624-5767/3953</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 59</td>
<td>Datafax DSN 464-8326</td>
</tr>
<tr>
<td></td>
<td>FT Knox, KY 40121-0059</td>
<td></td>
</tr>
<tr>
<td>SCHOFIELD BKS, HI</td>
<td>USA LAO (25ID)</td>
<td>DSN 315-456-2772</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLA-P-SB</td>
<td>(808) 656-2772</td>
</tr>
<tr>
<td></td>
<td>BLDG T920 (AMCOM)</td>
<td>Datafax (808) 656-1086</td>
</tr>
</tbody>
</table>

76 DA PAM 738–751 • 15 March 1999
<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROTON, CT</td>
<td>USA LAO</td>
<td>DSN 636-7925 Ext 2929 (860) 441-2929</td>
</tr>
<tr>
<td></td>
<td>139 Tower Ave</td>
<td>Datafax (860) 441-2971</td>
</tr>
<tr>
<td></td>
<td>Groton, CT 06340-5300</td>
<td></td>
</tr>
<tr>
<td>EASTOVER, SC</td>
<td>USA LAO (TADS/PNVS)</td>
<td>DSN 583-8299 EXT 29 (803) 776-7033 EXT 29</td>
</tr>
<tr>
<td></td>
<td>AASF, Suite 41</td>
<td>Datafax DSN 583-8299</td>
</tr>
<tr>
<td></td>
<td>McEntire ANG Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastover, SC 29044-5041</td>
<td></td>
</tr>
<tr>
<td>FRESCO, CA</td>
<td>USA LAO</td>
<td>DSN 949-5309 (209) 454-5309</td>
</tr>
<tr>
<td></td>
<td>ARNG of CA (AVCRAD)</td>
<td>Datafax DSN 949-9338</td>
</tr>
<tr>
<td></td>
<td>5168 E. Dakota Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresno, CA 93727-7404</td>
<td></td>
</tr>
<tr>
<td>SPRINGFIELD, MO</td>
<td>USA LAO MO AVCRAD</td>
<td>DSN 581-1292 (417) 869-2873</td>
</tr>
<tr>
<td></td>
<td>2501 Lester Jones Ave</td>
<td>Datafax (417) 895-6605</td>
</tr>
<tr>
<td></td>
<td>Springfield, MO 65803-9513</td>
<td></td>
</tr>
<tr>
<td>BOISE, ID</td>
<td>USA LAO (TADS/PNVS)</td>
<td>DSN 422-5259 (208) 422-5259</td>
</tr>
<tr>
<td></td>
<td>AASF Maint, Bldg 1502</td>
<td>Datafax DSN 422-6769</td>
</tr>
<tr>
<td></td>
<td>5000 S. Ulm Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boise ID 83705-8078</td>
<td></td>
</tr>
<tr>
<td>JACKSONVILLE, FL</td>
<td>USA LAO</td>
<td>DSN 860-8144 EXT 81 (904) 998-0141</td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 15066</td>
<td>Datafax (904) 998-0342</td>
</tr>
<tr>
<td></td>
<td>Jacksonville, FL 32239-5066</td>
<td></td>
</tr>
<tr>
<td>MORRISVILLE, NC</td>
<td>USA LAO (TADS/PNVS)</td>
<td>DSN 582-9234 EXT 7543 (919) 664-7543</td>
</tr>
<tr>
<td></td>
<td>North Carolina National Guard</td>
<td>Datafax DSN 582-7564</td>
</tr>
<tr>
<td></td>
<td>AASF #1, P.O. Box B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raleigh-Durham Airport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morrisville, NC 27560-8002</td>
<td></td>
</tr>
<tr>
<td>WEST JORDAN, UT</td>
<td>USA LAO (TADS/PNVS)</td>
<td>DSN 766-4405 (801) 565-4405</td>
</tr>
<tr>
<td></td>
<td>Utah ARNG</td>
<td>Datafax DSN 766-4404</td>
</tr>
<tr>
<td></td>
<td>7563 S. Airport Rd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Jordan, UT 84084-0880</td>
<td></td>
</tr>
<tr>
<td>MARANA, AZ</td>
<td>Western ARNG AVN</td>
<td>DSN 853-2700 EXT 4565 (520) 682-4565</td>
</tr>
<tr>
<td></td>
<td>Training Site-AZNG</td>
<td>Datafax (520) 682-4518</td>
</tr>
<tr>
<td></td>
<td>Silverbell AHP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bldg L45-500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marana, AZ 85653-9598</td>
<td></td>
</tr>
<tr>
<td>HOUSTON, TX</td>
<td>USA LAO (TADS/PNVS)</td>
<td>DSN 954-2385 (713) 929-2385</td>
</tr>
<tr>
<td></td>
<td>Utah ARNG</td>
<td>Datafax DSN 954-2397</td>
</tr>
<tr>
<td></td>
<td>Bldg 1183.</td>
<td>Comm (713) 929-2397</td>
</tr>
<tr>
<td></td>
<td>Ellington Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Houston, TX 77034-5513</td>
<td></td>
</tr>
<tr>
<td>CONROE, TX</td>
<td>USAR ASF Houston</td>
<td>(409) 525-3345 Mobile Phone (713) 410-1723</td>
</tr>
<tr>
<td></td>
<td>4724 South Parkway</td>
<td>Datafax (409) 525-3486</td>
</tr>
<tr>
<td></td>
<td>Conroe, TX 77303-2298</td>
<td></td>
</tr>
<tr>
<td>SECKENHEIM, GE</td>
<td>USA LAO</td>
<td>OVS 314-375-3755/8139 Comm 011-49621-487-3755/8139</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSAT-I-LAE</td>
<td>Datafax OVS 314375-6049</td>
</tr>
<tr>
<td></td>
<td>Unit 29331 APO AE 09266</td>
<td></td>
</tr>
<tr>
<td>GIEBELSTADT, GE</td>
<td>AMCOM</td>
<td>OVS 352-8497/7622 Comm 011-49-9334-87-8497</td>
</tr>
<tr>
<td></td>
<td>CMR 408 - Box 155</td>
<td>Datafax OVS 352-7215</td>
</tr>
<tr>
<td></td>
<td>Unit 26410 APO AE 09182</td>
<td></td>
</tr>
<tr>
<td>HANAU, GE</td>
<td>USA LAO</td>
<td>OVS 322-7367/7485 Comm 011-49-6183-51-367</td>
</tr>
<tr>
<td></td>
<td>HHC 4th BDE 1AD</td>
<td>Datafax OVS 322-7367/7485</td>
</tr>
<tr>
<td></td>
<td>Unit 20194, Box 391</td>
<td></td>
</tr>
<tr>
<td>ILLESHEIM, GE</td>
<td>USA LAO</td>
<td>OVS 467-4923 Comm 011-49-9841-83-923</td>
</tr>
<tr>
<td></td>
<td>11th Avn BDE</td>
<td>Datafax OVS 467-4923</td>
</tr>
<tr>
<td></td>
<td>CMR 416, Box 1131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APO AE 09140</td>
<td></td>
</tr>
<tr>
<td>SANDHOFEN, GE</td>
<td>USA LAO</td>
<td>OVS 382-5244 Comm 011-49-621-779-5244</td>
</tr>
<tr>
<td></td>
<td>70th Trans Bn (AVIM)</td>
<td>Datafax OVS 382-5390</td>
</tr>
<tr>
<td></td>
<td>Unit 29719, Box 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APO AE 69028</td>
<td></td>
</tr>
</tbody>
</table>
Table 3–7
Logistic Assistance Offices and Logistic Assistance Representatives 1 —Continued

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone*</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATTERBACK, GE</td>
<td>USA LAO</td>
<td>OVS 467-2616</td>
</tr>
<tr>
<td></td>
<td>HHC 4th BDE</td>
<td>Comm 011-49321-305-604</td>
</tr>
<tr>
<td></td>
<td>CMR 454, Box 2035</td>
<td>Datafax OVS 355-8604</td>
</tr>
<tr>
<td></td>
<td>APO AE 99250-5000</td>
<td></td>
</tr>
<tr>
<td>WIESBADEN, GE</td>
<td>USA LAO</td>
<td>OVS 337-6023</td>
</tr>
<tr>
<td></td>
<td>7/159TH Avn Regt</td>
<td>Comm 011-49-611-705-6023</td>
</tr>
<tr>
<td></td>
<td>CMR 430, Box 725</td>
<td>Datafax OVS 337-5292</td>
</tr>
<tr>
<td></td>
<td>APO AE 09096</td>
<td></td>
</tr>
<tr>
<td>AVIANO, ITALY</td>
<td>USA LAO</td>
<td>OVS 632-7165/7173</td>
</tr>
<tr>
<td></td>
<td>PSC 54, P.O. Box 2493</td>
<td>Datafax Day OVS 632-7165</td>
</tr>
<tr>
<td></td>
<td>APO AE 09601</td>
<td>Comm 011-39-434-667165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Night OVS 6327245/8686</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comm 011-39-434-667245/8686</td>
</tr>
<tr>
<td>PANAMA</td>
<td>USA LAO (AMCOM)</td>
<td>OVS 313-284-6504</td>
</tr>
<tr>
<td></td>
<td>PSC 02, Box 2370</td>
<td>Comm 011-5072-284-6504</td>
</tr>
<tr>
<td></td>
<td>APO AA 34002</td>
<td>Datafax 313-284-6453</td>
</tr>
<tr>
<td>SEOUL, KOREA</td>
<td>USA LAO-FE</td>
<td>OVS 724-8397</td>
</tr>
<tr>
<td></td>
<td>Unit 15293</td>
<td>Comm 011-82-2-7914-8397</td>
</tr>
<tr>
<td></td>
<td>APO AP 96205-0066</td>
<td>Datatfax 011-82-27914-8411</td>
</tr>
<tr>
<td>SEOUL, KOREA</td>
<td>USA LAO-FE (AMCOM)</td>
<td>OVS 741-6684</td>
</tr>
<tr>
<td></td>
<td>Unit 15293</td>
<td>Datafax 741-6684</td>
</tr>
<tr>
<td></td>
<td>APO AP 96205-0066</td>
<td></td>
</tr>
<tr>
<td>CAMP CASEY, KOREA</td>
<td>LAO 2/ID</td>
<td>OVS 730-1967</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-K-ID</td>
<td>Comm 011-82-2-351-60-1967</td>
</tr>
<tr>
<td></td>
<td>BLDG S-2242</td>
<td>Datafax 730-1147</td>
</tr>
<tr>
<td></td>
<td>Unit 15048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APO AP 96224-0309</td>
<td></td>
</tr>
<tr>
<td>CAMP PAGE, KOREA</td>
<td>USA LAO</td>
<td>OVS 721-2336</td>
</tr>
<tr>
<td></td>
<td>PSC 318, Box 44</td>
<td>Comm 011-82-361-59-2336</td>
</tr>
<tr>
<td></td>
<td>APO AP 96297</td>
<td>Datafax OVS 721-5766</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comm 011-82-361-595766</td>
</tr>
<tr>
<td>CAMP PAGE, KOREA</td>
<td>USA LAO</td>
<td>OVS 721-5066</td>
</tr>
<tr>
<td></td>
<td>PSC 304, Box 15</td>
<td>Comm 011-82-361-59-5066</td>
</tr>
<tr>
<td></td>
<td>APO AP 96208</td>
<td>Datafax OVS 721-5058</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comm 011-82-361-595766</td>
</tr>
<tr>
<td>CAMP HUMPHREYS, KOREA</td>
<td>USA LAO</td>
<td>OVS 315-753-6008/6014/7414</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXLS-K-P</td>
<td>Comm 011-82-333-690-6008/6014/7414</td>
</tr>
<tr>
<td></td>
<td>Bldg S-737</td>
<td>Datafax OVS 315-753-6010</td>
</tr>
<tr>
<td></td>
<td>Unit 15228</td>
<td>Comm 011-82-333690-6010</td>
</tr>
<tr>
<td>CAMP STANLEY, KOREA</td>
<td>USA LAO</td>
<td>OVS 732-5931</td>
</tr>
<tr>
<td></td>
<td>HHC Avn Bde</td>
<td>Comm 011-82-351-870-5931</td>
</tr>
<tr>
<td></td>
<td>Unit 15435</td>
<td>Datafax 732-5408</td>
</tr>
<tr>
<td></td>
<td>APO AP 96257-0481</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1 Information in this table can be used by Army aviation maintenance personnel when they are in need of logistics, and maintenance technical assistance, information, and guidance on aircraft and other aviation equipment.
2 GEOGRAPHICAL AREAS OF SUPPORT: Includes all Active Army, USAR, and Army NG units within Texas (West of the Pecos River) and New Mexico.

Table 3–8
Sample of a Maintenance Records Checklist

<table>
<thead>
<tr>
<th>AIRCRAFT LOG BOOK</th>
<th>DATE</th>
<th>INITIAL</th>
<th>HISTORICAL RECORDS</th>
<th>DATE</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA FORM 2408-4-2</td>
<td></td>
<td></td>
<td>DA FORM 2408-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA FORM 2408-4-3</td>
<td></td>
<td></td>
<td>DA FORM 2408-5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA FORM 2408-13</td>
<td></td>
<td></td>
<td>DA FORM2408-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA FORM 2408-13-1</td>
<td></td>
<td></td>
<td>DA FORM 2408-15-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA FOR M2408-13-2</td>
<td></td>
<td></td>
<td>DA FORM 2408-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3–8
Sample of a Maintenance Records Checklist —Continued

<table>
<thead>
<tr>
<th>Aircraft Log Book</th>
<th>Date</th>
<th>Initial</th>
<th>Historical Records</th>
<th>Date</th>
<th>Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA Form 2408-13-3</td>
<td></td>
<td></td>
<td>DA Form 2408-16-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA Form 2408-14-1</td>
<td></td>
<td></td>
<td>DA Form 2408-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA Form 2408-18</td>
<td></td>
<td></td>
<td>DA Form 2408-19 Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locally Required Forms</td>
<td></td>
<td></td>
<td>DA Form 2408-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Control</td>
<td></td>
<td></td>
<td>Quality Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Records/Files</td>
<td>Date</td>
<td>Initials</td>
<td>Records/Files</td>
<td>Date</td>
<td>Initials</td>
</tr>
<tr>
<td>Flowchart</td>
<td></td>
<td></td>
<td>TBO File</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status Board</td>
<td></td>
<td></td>
<td>QA File</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workorder File</td>
<td></td>
<td></td>
<td>Serial Number File</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWO File</td>
<td></td>
<td></td>
<td>AOAP File</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1352-1 Reports</td>
<td></td>
<td></td>
<td>Weight and Balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Records</td>
<td></td>
<td></td>
<td>DA Form 2410 Submitted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. This checklist is provided to aid maintenance and quality control personnel in the forms and records management for the following actions—
 Replacement of components/modules.
 After application or removal of a MWO).
 After compliance with a SOF message/TB.
 After installation or removal of equipment listed on the DA Form 2408-17.
 After completion of extensive maintenance, such as scheduled maintenance.
2. Verification that the forms, records, files, and charts have been updated will be indicated by placing the date (dd mm yy) of the action and the initials of the person completing the action in the date and initial blocks.

Table 3–9
AMCOM Modification Work Order Contract Field Team Application Facility Addresses and Geographical Support Areas

<table>
<thead>
<tr>
<th>Address & Telephone Number</th>
<th>Supported Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander AMCOM, Project OLR</td>
<td>GA, FL, SC, NC, VA, WV, DE, CT, RI, MA, ME, VT, MD, NH, NY, PA, NJ, DC, PR, VI, Panama, Honduras</td>
</tr>
<tr>
<td>ATTN: AMSAM-MMC-RE-FM-SG</td>
<td>P.O. Box 23707</td>
</tr>
<tr>
<td>Bingville Station</td>
<td>Savannah, GA 31405</td>
</tr>
<tr>
<td>DSN 971-5402/5931</td>
<td>DATA FAX Comm 912-355-5152</td>
</tr>
<tr>
<td>Comm 912-352-5402/5931</td>
<td></td>
</tr>
<tr>
<td>Commander AMCOM, Project OLR</td>
<td>KY, TN, OH, IN, IL, MI</td>
</tr>
<tr>
<td>ATTN: AMSAM-MMC-RE-FM-CK</td>
<td>P.O. Box 138</td>
</tr>
<tr>
<td>Woodlawn, TN 37191</td>
<td>DSN 635-7471</td>
</tr>
<tr>
<td>DATA FAX Comm 502-798-7471</td>
<td></td>
</tr>
</tbody>
</table>

Table 3–9
AMCOM Modification Work Order Contract Field Team Application Facility Addresses and Geographical Support Areas—Continued

<table>
<thead>
<tr>
<th>Address & Telephone Number</th>
<th>Supported Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander AMCOM, Project OLR</td>
<td>TX, LA, AR, OK, MS, AL, NM, CO, KS, MO</td>
</tr>
<tr>
<td>ATTN: AMSAM-MMC-RE-FM-KT</td>
<td>Kileen, TX 76543</td>
</tr>
<tr>
<td>DSN 737-3511/8362</td>
<td>DATA FAX DSN 737-0669</td>
</tr>
<tr>
<td>Comm 254-287-3511/8362</td>
<td></td>
</tr>
<tr>
<td>Commander AMCOM, Project OLR</td>
<td>HI, CA, UT, WY, OR, WA, NE, MT, ND, SD, IA, WI, MN, NV, AZ, ID, AK</td>
</tr>
<tr>
<td>ATTN: AMSAM-MMC-RE-FM-LW</td>
<td>P.O. Box 439</td>
</tr>
<tr>
<td>Dupont, WA 98327-0439</td>
<td>DSN 357-5761/3876/2850/6645</td>
</tr>
<tr>
<td>DATA FAX DSN 357-2565</td>
<td>Comm 253-976-5761/3876/2850/6645</td>
</tr>
</tbody>
</table>
Table 3–9
AMCOM Modification Work Order Contract Field Team
Application Facility Addresses and Geographical Support
Areas—Continued

<table>
<thead>
<tr>
<th>Address & Telephone Number</th>
<th>Supported Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rorie Boyle</td>
<td>Korea, Japan, and Far East</td>
</tr>
<tr>
<td>AMCOM, Project OLR</td>
<td></td>
</tr>
<tr>
<td>A Co 3/501st Avn Regt</td>
<td></td>
</tr>
<tr>
<td>Unit Number 15203</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMSAM-MMC-RE-FM-RK</td>
<td></td>
</tr>
<tr>
<td>APO AP 96271-0139</td>
<td></td>
</tr>
<tr>
<td>DSN (315)-753-7107/7108</td>
<td></td>
</tr>
<tr>
<td>DATA FAX DSN 753-4942</td>
<td></td>
</tr>
<tr>
<td>Comm 011-82-333-690-7107/7108</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Germany and NATO Countries</td>
</tr>
<tr>
<td>AMCOM, Project OLR</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMSAM-MMC-RE-FM-GR</td>
<td></td>
</tr>
<tr>
<td>APO AE 09266</td>
<td></td>
</tr>
<tr>
<td>DSN Heidelberg Military 375-6826</td>
<td></td>
</tr>
<tr>
<td>DATA FAX 011-49-6214-79825</td>
<td></td>
</tr>
<tr>
<td>Comm 011-49-621-487-6826</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-1. Sample of a DA Form 2402 Exchange Tag

Legend for Figure 3-1:
Preparation Instructions (by block number and title) for completion of a DA Form 2402 Exchange Tag

1. SUPPORT AGENCY (DODAAC). Enter the support activity DODAAC where the item is to be exchanged.

2. DATE. Enter the date (dd mmm yy) the item was prepared for exchange.

3. ORGANIZATION (DODAAC). Enter the DODAAC of the unit or organization needing to exchange the item.

4. WARRANTY/EXCHANGE. Place an “X” in the block to identify the item as a reparable exchange item. This form will not be used for PQDR exhibits.

5. NSN. Enter the National Stock Number of the item.

6. NOUN NOMENCLATURE. Enter the name of the item. If space is not available, shorten or abbreviate the name.

7. PD. Enter the Priority Designator (PD) assigned to the unit or organization listed in block 3. When the exchange is in support of a customer’s maintenance request, use the PD of the maintenance request.
8. **PD AUTHENTICATION.** The commander or the designated representative will sign here when a PD of 01 through 10 appears in block 7. When the transaction supports a customer maintenance request, enter the Work Order Number (WON).

9. **END ITEM NOUN NOMENCLATURE.** Enter the name of the end item that the item was removed from.

10. **MODEL.** Enter the model number of the end item, aircraft.

11. **SERIAL NO.** Enter the Serial Number of the end item. For aircraft, use seven numerical digits.

12. **DEFICIENCY OR SYMPTOM.** Enter a brief description of the fault or failure of the item in block 6.

13. **DATE ACCEPTED.** When the form is used as a receipt, the exchange facility will enter the date (dd mmm yy).

14. **SIGNATURE.** The person who receives the item for repairable exchange will sign his or her name.

15. **NMCS.** Print the word "YES" for a NMCS condition.

16. **JON.** The repair facility enters the WON from the maintenance request (DA Form 2407).

17. **INITIALS.** First and last name initials of the person receiving the item for repair.

18. **DATE REPAIRED.** The person doing the work puts the date (dd mmm yy) the item was repaired in this block.

19. **INITIALS.** First and last name initials of the person who repaired the item.
Figure 3-2. Sample of a completed DD Form 2332 (Product Quality Deficiency Report Exhibit)

Legend for Figure 3-2:

Preparation Instructions (by block number and title) for Completion of a DD Form 2332 Materiel Deficiency Exhibit

1. REPORT CONTROL NUMBER. The PQDR Control Number obtained from block 3 of the original PQDR.

2. DATE. The date (dd mmm yy) when the PQDR exhibit was prepared for shipment.

3. ORIGINATING ACTIVITY. The name and address of the facility that is going to ship the exhibit.

4. NSN. The National Stock Number of the exhibit. Block 5 of the original PQDR.

5. PART NO. The Part Number of the exhibit. Block 8 of the original PQDR.

6. SERIAL NO. The Serial Number of the exhibit. Block 9 of the original PQDR.

7. REMARKS (Continue on reverse, if necessary). Fill in any pertinent information that will aid the shipper and the receiver of the exhibit with the disposition of the item. Include how the item is being shipped, such as, commercial or through the Army Supply System.

8. ITEM DESCRIPTION. Provide item name and a brief description of the exhibit.

9. NAME. Name of the person completing this form.
10. PHONE. Phone number (Commercial/DSN) of the person completing this form.

11. DATE EXHIBIT RELEASED. Date (dd mmm yy) the exhibit was released to the shippers.

12. EXHIBIT RELEASED TO. Name, address, and phone number (DSN/Commercial) of the person and/or company that is shipping the exhibit.
FROM: CDR 82ND CAB FT BRAGG NC //ATK-ACDO-S//
TO: CDR USAATCOM STL MO //AMSAT-R//
INFO CDR USASC FT RUCKER AL //PESC-S//
CDR USAFORSCOM FT MCPHERSON GA //AFLG-FMA//

UNCLAS

SUBJECT: - CATEGORY I DEFICIENCY REPORT ON UH-1H TAIL ROTOR CLAMP COUPLINGS

1. SSG RODNEY J. BUZZELL, DSN/AUTOVON 236-1758, COMMERCIAL 419
 236-1758/1027.
2. N/A.
3. W58XJC900000.
4. 19 MAR 90.
5. 3020-00-957-6866.
6. CLAMP, COUPLING.
7. {A} BELL HELICOPTER TEXTRON, FT. WORTH, TX 76101.
 {B} 97499.
 {C} BELL HELICOPTER TEXTRON, FT. WORTH, TX 76101.
8. 204-040-811-1
9. 3FKA4.

DISTR:

DRAFTER TYPED NAME, TITLE, OFFICE SYMBOL, PHONE
BARBARA J. WARREN, DSN/AV 236-2286
AFK-ACDO-S

RELEASED TYPED NAME, TITLE, OFFICE SYMBOL, PHONE
SEN HARRIGAN, DSN/AV 236-2286
AFK-ACDO-S

Figure 3-3A. Sample of a completed Category I Deficiency Report (message format)
FROM:

TO:

10. {A} DAAJ09-07-412b
 {B} UNK
 {C} 0078-6009
 {D} UNK

11. NEW

12. b APR '90

13. E TSN-215

14. NO

15. ONE {1}
 {A} THREE {3}
 {B} FOUR {4}
 {C} ONE {1}
 {D} THREE {3}

16. {A} {1} UH-1H, HELICOPTER.
 {2} 6b16123
 {B} {1} 1520-00-087-7637
 {2} HELICOPTER

DISTR:

Figure 3-3B. Sample of a completed Category I Deficiency Report (message format)
FROM:

TO:

{3} N/A.

{4} 6616123.

17. $1,521.00.

18. $144.00.

19. No.

20. RUA.

21. SS.

22. {A} A.

{B} 02.

{C} G.

{D} 3.

{E} TM 55-1520-210-23P1, 20 FEB 85, PAGE 293, FIG 179, ITEM 1.

{F} 2,513.

{G} 215.

{H} 070.

{I} NONE.

{J} BECAUSE OF IMPROPER FIT OR IMPROPER ALIGNMENT OF CLAMP ON
FROM:

TO:

CERVIC COUPLING WHEN CLAMPS ARE INSTALLED AND TORQUED. THIS CAUSES CLAMPS TO BADLY DISTORT AND WILL FINALLY CAUSE STRESS FRACTURES TO THE CLAMP. WHEN CASTINGS OF THE DEFECTIVE CLAMPS WERE COMPARED WITH THOSE CLAMPS THAT HAD MET THE INSPECTION CRITERIA.

<K> IT WAS FOUND THAT THE INTERNAL "V" PORTION WAS A LOT WIDER AND THEREFORE WOULD NOT CONTACT THE CERVIC COUPLING PROPERLY. THE CERVIC COUPLING WOULD CONTACT THE TOP INSIDE OF THE CLAMP AND NOT THE SIDES AS DESIGNED.

<L> NONE.

<M> HAVE THE QUALITY CONTROL PERSONNEL AT THE MANUFACTURE PAY MORE ATTENTION TO DETAIL.

23. 1/159 AV REG, FT. BRAGG, NC 28307.
Legend for Figure 3-3D:
Preparation Instructions (Keyed to Block Numbers on SF 368) for Preparation of DD Form 173/3 -- Category I PQDR (Message Format)

FROM: Your unit and location per AR 105-31.

TO: Enter CDRAMCOM REDSTONE ARSENAL AL//AMSAM-AR-E//

INFO: Enter CDR USASC FT RUCKER AL//CSSC-I// and the proper MACOM that your unit is assigned to.

SUBJECT: Category I Deficiency Report on (name of faulty item).

NOTE: Item headings shown in parenthesis below will not be included in the message.

1. (POINT OF CONTACT). Name, duty phone (DSN/Commercial), and home phone. The name of the person to be reached within 48 hours for more information about faulty item and/or to request the PQDR exhibit.

2. (To: (Screening Point)). Enter "N/A."

3. (REPORT CONTROL NUMBER). The DODAAC of your unit (6 places), followed by the calendar year (2 places), followed by the number of PQDR's (Category I and II) you have sent in during the calendar year (4 places). For example, the first PQDR for 1995 sent in by a unit with DODAAC 4KFFFF would be 4KFFFF950001.

4. (DATE DEFICIENCY DISCOVERED). The date (dd mmm yy) the deficiency was found.

5. (NATIONAL STOCK NO). The NSN of the deficient item.

6. (NOMENCLATURE). The name of the deficient item.

7a. (MANUFACTURER/CITY/STATE). The name of the manufacturer, contractor, or Government unit/activity that repaired, overhauled, or rebuilt the defective item, and the city and state.

7b. (MFRS. CODE). The CAGE code of the manufacturer, contractor, or government unit/activity that made or repaired the defective item.

7c. (SHIPPER/CITY/STATE). The name of the shipper, city, and state. If unknown, put "UNK" here.

8. (MFG PART NO). The manufacturer's part number of the defective item.

9. (SERIAL/LOT/BATCH NO). The Serial Number of the defective item, and if available, the lot or batch number. When the lot or batch number is not available, enter "None" here.

10a. (CONTRACT NO). The Contract Number.

10b. (PURCHASE ORDER NO). The Purchase Order Number.

10c. (REQUISITION NO). The Requisition Number.

10d. (GBL NO). The Government Bill of Lading (GBL) Number.

11. (ITEM, NEW, REPAIRED/OVERHAULED). If the item is new, repaired, overhauled, or rebuilt enter the one that applies.

12. (DATE RCVD, MFRD, REPAIRED, OVERHAULED OR REBUILT). The date (dd mmm yy) received, manufactured, last overhauled, repaired, or rebuilt.

13. (OPERATING TIME AT FAILURE). The number of hours the item has been in use since new (TSN), repaired, overhauled (TSO), or rebuilt when the problem was found. Hours will be rounded off to the nearest hour, for example, TSN 850 or TSO 1203. TSN or TSO hours can be calculated by using data on DA Form 2408-16 or 2408-16-1, and the current aircraft operating hours on the DA Form 2408-13. When TSN or TSO hours are not on these records, put in an estimated time prefixed with a capital "E," for example, E TSN-850 or E TSO-1203.

14. (GOVERNMENT FURNISHED MATERIAL). Enter "No." Only contractors will use "Yes."

15. (QUANTITY). The actual number of deficient items being reported. Do not enter the unit of issue.

a. (RECEIVED). The total number of items received in the lot or batch that contained the bad item.

b. (INSPECTED). The number of items that were actually inspected for the same fault or failure being reported.

c. (DEFICIENT). The number of deficient items found during inspection for the same fault or failure being reported.

d. (IN STOCK). The number of items found in unit and technical supply stock. If none put a zero.

16. (DEFICIENT ITEM WORKS ON/WITH).

a. (END ITEM).

(1) (TYPE/MODEL/SERIES). The Mission Design Series and name of the major end item of equipment that the deficient item is used with. For example, AH-64A, Helicopter.

(2) (END ITEM SERIAL NO). The Serial Number of the end item. For an aircraft use only seven numerical characters.

b. (NEXT HIGHER ASSEMBLY).

(1) (NATIONAL STOCK NUMBER). The NSN of the next higher assembly the defective item is part of; for example, 2840-01-013-1339.

(2) (NOMENCLATURE). The name and MDS of the next higher assembly the defective item is part of; for example, Engine, T63-A-720.
(3) (PART NO). The next higher assembly Part Number, for example, P/N 6887191.

(4) (SERIAL NO). The next higher assembly Serial Number; for example, AE-40425.

17. (UNIT COST). The dollar value of one defective item. Use the AMDF price.

18. (ESTIMATED REPAIR COST). The estimated cost, including overhead, for fixing all deficient items in 15c. When you have more than one deficient item, multiply the cost to fix one item by the number of defective items.

19. (ITEMS UNDER WARRANTY). "YES" if the item is under warranty. Put the expiration date of the warranty in parenthesis, for example, (1992). "NO" if the item is not under warranty.

20. (WORK UNIT CODE/EIC). If the defective item is a reportable item enter the WUC of the item. Also enter the End Item Code (EIC) of the aircraft or training device/simulator that the defective item is installed on. WUC codes can be found in TB 1-1500-341-01 and EIC codes are listed in appendix D. If the item is not a reportable item, just enter the EIC.

21. (ACTION/DISPOSITION). Indicate the type of action taken. If an exhibit is held, indicate the number of days it will be held (the minimum is 55 days). If none of the items indicate the action taken or asked for, note it here. Then indicate the type of action taken or asked for in 22.

22. (DETAILS). Indicate the following information.

a. (UTILIZATION CODE). The proper code that identifies the type of unit/activity that found the fault or failure of the item (see table 1-11).

b. (WHEN FAULT WAS DISCOVERED). The proper "When Discovered Code" that applies to the fault, failure or condition you are reporting. See table 1-4 or DA Form 2408 in the logbook for the proper code.

c. (HOW RECOGNIZED). The proper "How Recognized Code" that applies to the fault, failure, or condition you are reporting. See table 1-5 or DA Form 2408 in the logbook for the proper code.

d. (MALFUNCTION EFFECT ON MISSION). The proper "Malfunction Effect Code" that applies to the fault, failure or condition you are reporting when it affects the mission in any way. See table 1-6 or DA Form 2408 in the logbook for the proper code. If the fault, failure, or condition did not affect the mission enter "2," No Effect code.

e. (TM NUMBER). To help identify the deficient item, enter the applicable TM Number and date (dd mmm yy). Include the TM page, figure, and item number.

f. (TOTAL AIRCRAFT HOURS). The total operating hours of the deficient repair part, component/module, or aviation associated equipment. Get operating hours from the current DA Form 2408-13, 2408-16, or 2408-16-1, as it applies.

g. (TIME SINCE INSTALLATION). The operating time since installation, of the deficient item, when it is different from f. above.

h. (FAILURE CODE). The reason for the reported deficiency or failure. Choose the proper digit code from table 1-2 or 1-3; for example, 190 for Cracked.

i. (CIRCUMSTANCES PRIOR TO DIFFICULTY). To aid in the investigation of the deficient item, enter all known details about what happened, and conditions before failure of the item. Specify any modification or changes recently applied that may be directly related to the problem. When there is a structural fault or failure, enter the total gross weight of the aircraft. Enter any unusual circumstances found during previous flights or use; for example, thunderstorm, hail, and lightning. Include any information that could be the cause; for example, low power, hard landing, and so forth. If you did any troubleshooting to locate the faulty component/part, or know the reason the item failed, enter such information. If the deficient item is a component that calls for oil analysis, enter the date the last oil analysis sample was taken. Identify the lab to which you sent the oil sample. Enter any other information that will aid maintenance managers, at AMCOM, during maintenance and failure analysis of the item reported.

j. (DESCRIPTION OF DIFFICULTY). Include a brief, but complete description of the fault or failure. Refer to repair parts and assemblies by complete name and part numbers. When you are referring to aircraft structural components or assemblies, provide the station number where the component or assembly is located.

k. (CAUSE). Outline the cause, or probable cause found during your preliminary investigation.

l. (ACTION TAKEN). Give a short summary of what you did to correct the fault or problem to improve the item reported. If the faulty item was fixed and put back in service describe the repair. If no action is taken to correct the fault or failure, print "None" here. Removal and replacement of the faulty item is not considered corrective action. If available send pictures, drawings, or sketches as attachments to the deficiency report.

m. (RECOMMENDATION). Give any suggestions to help stop problems, improve the equipment, or change maintenance instructions and procedures in technical publications.

23. (LOCATION OF DEFICIENT MATERIEL). The unit name, location, and zip code or APO number where the deficient materiel is located.

(AIRCRAFT ENGINE CHECKLIST). When the PQDR is submitted on an "in-flight" engine failure, enter answers to questions in proper sequence listed on engine checklist. If not, enter N/A.

(GAS TURBINE ENGINE CHECKLIST).

1. When did the failure occur (during flight idle, normal rated power, and military power, and so on)?
2. Was the engine operating at a set power setting, or was a power change in process at time of failure?
3. Did the engine fail during autorotation or autorotation power recovery (helicopter only)?

4. What were the general weather conditions? Outside air temperatures?

5. What was the indicated torque meter pressure, gas producer (N1) percent, power turbine RPM (N), and propeller RPM at time of failure? For helicopters, indicate the main rotor RPM instead of propeller RPM.

6. What was the indicated air speed at time of failure? Altitude?

7. What was the turbine inlet temperature, or EGT, when it applies, before failure?

8. Were oil pressure and temperature normal prior to failure?

9. Did the magnetic plug warning light in engine oil system come on before failure? If so, for what period? (Applicable only to installations using warning light system)

10. Was fuel control on "Automatic" at the time of failure?

11. Was the inlet guide vane anti-icing on at time of failure, if it applies?

12. Was compressor bleed on at time of failure? (For cabin heat or anti-icing of airframe)

13. What was the indicated fuel pressure on at time of failure?

14. Was the fuel boost pump "On" at time of failure?

15. Was the fuel filter bypass warning light "On" at time of failure?

16. Was an excessive vibration or abnormal noise noted before failure?

17. Was an excessive strain imposed on the engine as a result of prolonged operation at high torque or turbine inlet temperature?

18. Was engine hot start encountered? Specify if engine records indicate hot start history.

19. Was engine overspeed encountered? Specify if engine records indicate overspeed history.

20. Were there oil leaks during flight? Other leaks? Describe.

21. When it applies, include all information relative to engine and oil tank vent discharge, obstructions, and so on.

22. Did previous inspections of fuel and oil screens, filters, and magnetic plugs indicate more than normal accumulation of foreign particles? Describe filter screen, and magnetic plug condition after failure.

23. What grade of fuel was used?

24. What specification and grade of oil were used?

25. Was oil consumption excessive before, or at the time, of failure?

26. Indicate duration and date of last storage. Indicate type of storage. (For example, flyable, short term, intermediate.)

27. Do aircraft records indicate previous engine maintenance and faults related to the failure? If so, describe.

28. Was the engine in an installation that included an air inlet particle separator?

NOTE: When a doubt exists, repairs should be withheld. Wait for proper guidance or engineering advice from AMCOM.
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM (Organizer)</td>
<td>AASE-FITG, ATTN: Quality Control c/o Department of Naval Affairs Anville, PA. 17003</td>
</tr>
<tr>
<td>TO (Screening point)</td>
<td>COR, USA ATCOM, ATTN: AMSAT-I-MDO 4300 Goodfellow Blvd., St. Louis, MO 63120-1799 W58HOZ</td>
</tr>
<tr>
<td>NAME, TELEPHONE NO. AND SIGNATURE</td>
<td>Michael T. Pauffer DSN/NAV 235-2917</td>
</tr>
<tr>
<td>DATE</td>
<td>13 Jan 84</td>
</tr>
<tr>
<td>REPORT CONTROL NO.</td>
<td>W25KYJ640001</td>
</tr>
<tr>
<td>DATE DISCOVERY DISCOVERED</td>
<td>13 Jan 84</td>
</tr>
<tr>
<td>NATIONAL STOCK NO. (NSN)</td>
<td>2915-00-223-7004</td>
</tr>
<tr>
<td>NAMENLATION</td>
<td>Fuel Control</td>
</tr>
<tr>
<td>MANUFACTURER/CITY/STATE</td>
<td>Coll Industries West Hartford, CT 06110-0651</td>
</tr>
<tr>
<td>MFRS. CODE</td>
<td>11599</td>
</tr>
<tr>
<td>SHIPPER/CITY/STATE</td>
<td>West Hartford, CT 06110-0651</td>
</tr>
<tr>
<td>MFRS. PART NO.</td>
<td>8420017A</td>
</tr>
<tr>
<td>SERIAL/LOT/NCH NO.</td>
<td>652AS1956</td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>DAAJ09-92C-4223</td>
</tr>
<tr>
<td>ORDER NO.</td>
<td>1096480000</td>
</tr>
<tr>
<td>REQUISITION NO.</td>
<td>196</td>
</tr>
<tr>
<td>GSL NO.</td>
<td>X</td>
</tr>
<tr>
<td>ITEM REPAIRED/REPAIRED, OR OVERHAULED</td>
<td>OVERHAULED</td>
</tr>
<tr>
<td>DATE</td>
<td>03 Mar 83</td>
</tr>
<tr>
<td>OPERATING TIME AT FAILURE</td>
<td>TSO 368</td>
</tr>
<tr>
<td>GOVERNMENT FURNISHED MATERIAL</td>
<td>X</td>
</tr>
<tr>
<td>QUANTITY</td>
<td>1</td>
</tr>
<tr>
<td>UNIT COST</td>
<td>$32,421.00</td>
</tr>
<tr>
<td>ESTIMATED REPAIR COST</td>
<td>$</td>
</tr>
<tr>
<td>ITEM UNDER WARRANTY</td>
<td>X</td>
</tr>
<tr>
<td>EXPIRATION DATE</td>
<td></td>
</tr>
<tr>
<td>WORK UNIT CODE/EIC</td>
<td>04A05A RUA</td>
</tr>
<tr>
<td>HOLDING EXHIBIT FOR</td>
<td>60 DAYS</td>
</tr>
<tr>
<td>RELEASED FOR INVESTIGATION</td>
<td></td>
</tr>
<tr>
<td>RETURNED TO STOCK</td>
<td></td>
</tr>
<tr>
<td>DISPOSED OF</td>
<td></td>
</tr>
<tr>
<td>REPAIRED</td>
<td></td>
</tr>
<tr>
<td>OTHER (Explain in Item 22)</td>
<td></td>
</tr>
<tr>
<td>LOCATION OF DEFICIENT MATERIAL</td>
<td>AASF, Ft. Indiantown Gap, Annville, PA. 17003</td>
</tr>
</tbody>
</table>

Figure 3-4A. Sample of a completed SF 368 for a Category II Deficiency Report
CONTINUATION:

PRODUCTION QUALITY DEFICIENCY REPORT NUMBER: W25KYJ 840001

i. During MOC of phase inspection and when switching from automatic to manual of the emergency solenoid, electrical, P/N 79247, or from manual to automatic mode, the engine fuel pump warning light would flicker-on and then off. Pilot conducted same function three more times with the same result. Engine was shut down. Two direct pressure reading gages were connected between both fuel pump pressure taps and the fuel pressure switch. Engine was started with the following results:

- **Flight idle**
 - 71 percent, N1 = Fwd pressure tap = 300 psi,
 - Acft pressure tap = 200 psi.

- **Emergency**
 - 45 percent, N2 = Fwd pressure tap = 250 psi,
 - Acft pressure tap = 150 psi.

- **6000 RPM-N2**
 - 81.9 percent, N1 = Fwd pressure tap = 350 psi,
 - Acft pressure tap = 250 psi.

- **6600 RPM-N2**
 - 84.7 percent, N1 = Fwd pressure tap = 350 psi,
 - Acft pressure tap = 250 psi.

While switching from automatic to emergency mode or from emergency to automatic mode, the forward pressure tap reading would jump approximately 90 psi and the aircraft pressure tap would jump approximately 30 psi. Fuel control has a 50 plus differential pressure coming from the fuel pumps.

j. Differential pressure of 50 psi coming from fuel control pumps.

k. Suspect wearing of the fuel control, fuel pump, P/N 87352.

l. Fuel control replaced, holding as exhibit.

m. None.

Figure 3-4B. Sample of a completed SF 368 for a Category II Deficiency Report
Legend for Figure 3-4B: Preparation Instructions (by block number and title) for Completion of a Category II Product Quality Deficiency Report on SF Form 368

NOTE: Mark the Category II box.

1a. FROM (Originator). Enter your unit and location with zip code or APO number.

1b. NAME, TELEPHONE NO. AND SIGNATURE. Type or print your name and duty phone (DSN/Commercial). Sign your name above the typed or printed name.

1c. DATE. Current date (dd mmm yy).

2a. TO (Screening point). Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD, Redstone Arsenal, Huntsville, AL 35898-5000. DODAAC W81D17.

2b. NAME, TELEPHONE NO. AND SIGNATURE. Leave blank.

2c. DATE. Leave blank.

3. REPORT CONTROL NO. Put the DODAAC of your unit (6 places), followed by the calendar year (2 places), followed by the number of SF Forms 368 the unit has sent in during the year (4 places). For example, the first SF Form 368 for 1995 sent in by a unit with DODAAC 4KFFFF would be 4KFFFF950001.

4. DATE DEFICIENCY DISCOVERED. Calendar date (dd mmm yy).

5 NATIONAL STOCK NO. (NSN). The NSN of the deficient item.

6. NOMENCLATURE. The name of the deficient item.

7a. MANUFACTURER/CITY/STATE. The name of the manufacturer, contractor, or Government unit/activity that made, repaired, overhauled, or rebuilt the deficient item, and the city and state.

7b. MFRS. CODE. The CAGE of the manufacturer, contractor, or government unit/activity that made, repaired, overhauled, or rebuilt the defective item.

7c. SHIPPER/CITY/STATE. The name of the shipper, city and state.

8. MFRS. PART NO. The manufacturer's part number.

9. SERIAL/LOT/BATCH NO. The serial number of the deficient item, and if available the lot or batch number. When lot or batch number is not available, put "None" here.

10a. CONTRACT NO. The contract number.

10b. PURCHASE ORDER NO. The purchase order number.

10c. REQUISITION NO. The requisition number.

10d. GBL NO. The Government Bill of Lading number. If you cannot find this, leave blank.

11. ITEM NEW, REPAIRED/OVERHAULED. Check the correct block to indicate if the item is new or repaired/overhauled. If rebuilt, check the repair/overhauled block.

12. DATE RECD, MFRD, REPAIRED, OR OVERHAULED. The date received, manufactured, repaired, last overhauled, or rebuilt.

13. OPERATING TIME AT FAILURE. The number of hours the item has been in use since new, repaired, or overhauled when the problem was found. Hours will be rounded off to the nearest hour. For example, TSN-850 or TSO-1203. TSN or TSO hours can be calculated using DA Form 2408-16 or 2408-16-1, and current aircraft operating hours on DA Form 2408-13. When items are not recorded on these records, put in an estimated time prefixed with a capital "E"; for example, E TSN-245 or E TSO-1889.

14. GOVERNMENT FURNISHED MATERIEL. Mark the "No" box. Only contractors will mark the "Yes" block.

15. QUANTITY. The actual number of deficient items being reported. Do not enter the unit of issue.

a. RECEIVED. The total number of items received in the lot or batch that contained the bad item.

b. INSPECTED. The number of items that were actually inspected for the same fault or failure.

c. DEFICIENT. The number of defective items found during inspection for the same fault or failure.

d. IN STOCK. The number of deficient items in unit and technical supply stock. If none enter a zero.

16. DEFICIENT ITEM WORKS ON/WITH.

a. END ITEM (Aircraft, mower, etc.).

(1) TYPE/MODEL/SERIES. The Mission Design Series and name of the major end item that the deficient item is used with. For example, OH-58C, Helicopter.

(2) SERIAL NO. The serial number of the end item. For an aircraft use only seven numerical characters.

b. NEXT HIGHER ASSEMBLY.

(1) NATIONAL STOCK NO. (NSN). The NSN of the next higher assembly the deficient item is part of.

(2) NOMENCLATURE. The name and Mission Design Series of the next higher assembly the deficient item is part of; for example, Engine, T63-A-720.

(3) PART NO. The next higher assembly part number.

(4) SERIAL NO. The next higher assembly serial number.

17. UNIT COST. The dollar value of one deficient item. Use the AMDF price.
18. ESTIMATED REPAIR COST. The estimated cost, including overhead, for fixing all deficient items in block 15c. When you have more than one deficient item, multiply the cost to fix one item by the number of deficient items. If repair is not local, leave this block blank.

19a. ITEM UNDER WARRANTY. Check the block that applies.

19b. EXPIRATION DATE. The expiration date (dd mmm yy) of the warranty. Leave blank if it does not apply.

20. WORK UNIT CODE/EIC (Navy and Air Force Only). This block is also required for the Army. If the deficient item is a reportable item enter the WUC of the deficient item and the EIC of the aircraft or training device/simulator that the deficient item is installed on. WUC codes can be found in TB 1-1500-341-01 and EIC codes are listed in appendix D. If the item is not a reportable item, just enter the EIC.

21. ACTION/DISPOSITION. Check one of the blocks to indicate the type of action taken. If an exhibit is held, indicate the number of days it will be held (the minimum is 55 days). If none of the items indicate the action taken, check "OTHER." Then indicate the type of action taken in block 22.

22. DETAILS. Describe, to best ability, what is wrong, how and why, circumstances prior to difficulty, description of difficulty, cause, action taken, including disposition, recommendations. Attach copies of supporting documents. Continue on separate sheet if necessary. Enter the following information. Be sure to put the Report Control Number (block 3) on the continuation sheet.

a. UTILIZATION CODE. The proper code that identifies the type of unit or activity that found the fault or failure (see table 1-11).

b. WHEN FAULT WAS DISCOVERED. The proper "When Discovered Code" that applies to the fault, failure or condition you are reporting. See table 1-4 or DA Form 2408, in the logbook for the proper code.

c. HOW RECOGNIZED. The proper "How Recognized Code" that applies to the fault, failure, or condition you are reporting. See table 1-5 or DA Form 2408, in the logbook for the proper code.

d. MALFUNCTION EFFECT ON MISSION. The proper "Malfunction Effect Code" that applies to the fault, failure, or condition you are reporting when it affects the mission in any way. See table 1-6 or DA Form 2408, in the logbook for the proper code. If the fault, failure, or condition did not affect the mission enter "2" No Effect code.

e. TM NUMBER. To help identify the deficient item, enter the applicable TM number and date (dd mmm yy). Include the TM page, figure, and item number.

f. TOTAL AIRCRAFT HOURS. The total operating hours of the deficient repair part, component/module, or aviation associated equipment. Round the operating hours off to nearest hour. Get operating hours from the current DA Form 2408-13, 2408-16, or 2408-16-1, which applies.

g. TIME SINCE INSTALLATION. The operating time since installation of the defective item when it is different from item f, above.

h. FAILURE CODE. Enter the reason for the reported deficiency or failure by choosing the proper three digit code from table 1-2 or 1-3; for example, 190 for Cracked.

i. CIRCUMSTANCES PRIOR TO DIFFICULTY. To aid in the investigation of the deficient item, enter all known details about what happened, and conditions before failure of the item. Specify any modification or changes recently applied that may be directly related to the problem. When there is a structural fault or failure in an aircraft, enter the total gross weight of the aircraft. Enter conditions under which the fault or failure occurred; for example, takeoff, landing, acrobatic maneuvers, hard landing. Enter any unusual circumstances found during previous flights or use; for example, thunderstorm, hail, lightning. Include any information that could be the cause; for example, low power, hard landing. If you did any troubleshooting to locate the faulty component part or locate reason why the item failed, enter such information. If the deficient item is a component that calls for oil analysis, enter the date (dd mmm yy) the last oil analysis sample was taken. Identify the lab to which you sent the oil sample. Enter any other information that will aid maintenance managers at AMCOM during maintenance and failure analysis of the item reported.

j. DESCRIPTION OF DIFFICULTY. Include a brief, but complete description of the fault or failure. Refer to repair parts and assemblies by complete name and part numbers. When you are referring to aircraft structural components or assemblies, provide the station number where the component or assembly is located. When the deficiency report is submitted because of a SFDLR initial failure, enter "INITIAL FAILURE CLAIM."

k. CAUSE. Outline the cause or probable cause found during your preliminary investigation.

l. ACTION TAKEN. Give a short summary of what you did to correct the fault or problem to improve the item reported. If the faulty item was fixed and put back in service, describe the repair. Removal and replacement of the faulty item is not considered corrective action. If no action is taken to correct the fault or failure, print "None" here. If available send pictures, drawings, or sketches as attachments to the deficiency report. When the deficiency report is prepared as a result of initial failure of a SFDLR item, the LAR will enter "INITIAL FAILURE--YES," his or her signature and date they concurred that it is an initial failure.

m. RECOMMENDATION. Give any suggestions to help stop problems, improve the equipment, or change maintenance instructions and procedures in technical publications.

NOTE: Sketches and pictures should be attached as needed to help explain the condition and the equipment improvement recommendation.
23. LOCATION OF DEFICIENT MATERIAL. The unit name, location, and zip code or APO number where the deficient material is located.

24a. THRU 27c. Filled out by AMCOM.

AIRCRAFT TECHNICAL INSPECTION WORKSHEET

PART I - FAULT INFORMATION

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYS</th>
<th>DATE</th>
<th>NO TIME</th>
<th>PID</th>
<th>REC</th>
<th>MAL EFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>15MAR95</td>
<td>0940</td>
<td>RA9553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAULTS/REMARKS: Cotter pin not installed in collective servo to collective levers. Attatch bolt.

ACTION: Torqued nut and installed cotter pin.

PART II - CORRECTING INFORMATION

<table>
<thead>
<tr>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>718504</td>
<td>0</td>
<td>.5</td>
</tr>
</tbody>
</table>

ACTION: Installed.

<table>
<thead>
<tr>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>534000</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

ACTION: Cleaned windows.

<table>
<thead>
<tr>
<th>PID</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE85</td>
<td>0</td>
<td>.5</td>
</tr>
</tbody>
</table>

ACTION:

FOD REMINDER: Check work area for tools and parts after completion of maintenance and inspection.

Figure 3-5. Sample of a completed DA Form 2408-13-3 (Aircraft Technical Inspection Worksheet) (Technical Inspection)
AIRCRAFT TECHNICAL INSPECTION WORKSHEET

For use of this form, see DA PAM 738–751; the proponent agency is DCSLOG.

<table>
<thead>
<tr>
<th>1. ORGANIZATION</th>
<th>2. MODEL</th>
<th>3. SERIAL NUMBER</th>
<th>4. TYPE INSPECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO. 603RD ASB</td>
<td>SWASHPLATE</td>
<td>JSJG-5306</td>
<td>REPAIR</td>
</tr>
</tbody>
</table>

PART I - FAULT INFORMATION

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYS</th>
<th>DATE</th>
<th>NO</th>
<th>TIME</th>
<th>PID</th>
<th>15 MAR 95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>15 MAR 95</td>
<td>NO</td>
<td></td>
<td>PID</td>
<td></td>
</tr>
</tbody>
</table>

FAULTS/REMARKS: SWASHPLATE AND SUPPORT FRICITION IMPROPER. WILL NOT PASS BREAKAWAY CHECK.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>PID</th>
<th>HRS</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 MAR 95</td>
<td>1300</td>
<td>553784</td>
<td>F 4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYS</th>
<th>DATE</th>
<th>NO</th>
<th>TIME</th>
<th>PID</th>
<th>16 MAR 95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>16 MAR 95</td>
<td>NO</td>
<td></td>
<td>PID</td>
<td></td>
</tr>
</tbody>
</table>

FAULTS/REMARKS: INITIAL INSPECTION DUE.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>PID</th>
<th>HRS</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 MAR 95</td>
<td>1310</td>
<td>T63423</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART II - CORRECTING INFORMATION

ACTION: SHIMMED SWASHPLATE TO OBTAIN CORRECT FRICITION

INSPECTOR: O. J. R. D. L. D. R. N. 2.

ACTION: COMPL

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYS</th>
<th>DATE</th>
<th>NO</th>
<th>TIME</th>
<th>PID</th>
<th>18 MAR 95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>18 MAR 95</td>
<td>NO</td>
<td></td>
<td>PID</td>
<td></td>
</tr>
</tbody>
</table>

FAULTS/REMARKS: FINAL INSPECTION DUE.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>PID</th>
<th>HRS</th>
<th>CAT</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 MAR 95</td>
<td>0842</td>
<td>T63423</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOD REMINDER:

Check work area for tools and parts after completion of maintenance and inspection.

DA FORM 2408-13-3, OCT 97

Figure 3-6. Sample of a completed DA Form 2408-13-3 (Aircraft Technical Inspection Worksheet) (Component Repair)
Preparation Instructions (by block and title) for completion of a DA Form 2408-13-3, Aircraft Technical Inspection Worksheet

Page of X. Enter the page number and total number of pages.

1. ORGANIZATION. The name of the organization doing the inspection or repair.

2. MODEL. The item name and MDS. When this form is used to document in shop component repair, enter the component/module, or repair part nomenclature from DA Form 2407, block 9.

3. SERIAL NUMBER. The serial number of the item being inspected or repaired. If it is an aircraft use seven numerical characters. When this form is used to document in shop component repair, enter the component/module, or repair part serial number from DA Form 2407, block 11.

4. TYPE INSPECTION. The type of inspection being performed. When this form is used to document in shop component repair, enter "Repair."

PART I--FAULT INFORMATION

STATUS. When the person, performing the technical inspection, finds a fault or condition affecting the operation or flight of the aircraft, training device/simulator, or mission related equipment, aboard the aircraft, they will record it in the FAULT INFORMATION block. Then enter the proper status symbol in this block. Once a status symbol is in the STATUS block, it will not be erased or changed even if in error (para 1-9). The person who corrects a red "dash" or red "diagonal" fault will enter his or her last name initial over the status symbol. A red "X" or circled red "X" status symbol will be initialed over by a qualified designated representative appointed by the unit/activity commander.

SYS. The system code that shows which system the fault is related to. (System Codes can be found on the DA Form 2408 in front of the logbook.)

DATE. The date (dd mmm yy) a fault is discovered, a remark is made, or an inspection is entered.

NO. Number of the fault, ULLS-A generated. Manual users leave blank.

TIME. The time (24 hour clock) the fault was discovered.

PID. The person making the entry will enter their Personnel Identifier.

FAULT/REMARKS. Enter remarks, faults or deficiencies. Use as much space as needed to describe the fault or deficiency.

ACFT HRS. The current aircraft flying hours at the time the fault was discovered. Get the current aircraft flying hours from the DA Form 2408-13. For AVIM or Depot in shop component repair, leave blank.

WHEN DISC. ULLS-A and LAS users must enter the appropriate When Discovered Code, for faults and discrepancies, from table 1-4 or DA Form 2408. Leave blank when a remark is in the FAULT INFORMATION Block. Users under the manual record keeping system may use this block or leave it blank.

HOW REC. ULLS-A and LAS users must enter the appropriate How Recognized Code, for faults and discrepancies, from table 1-5 or DA Form 2408. Leave blank when a remark is in the FAULT INFORMATION Block. Users under the manual record keeping system may use this block or leave it blank.

MAL EFF. ULLS-A and LAS users must enter the appropriate Malfunction Effect Code, for faults and discrepancies, from table 1-6 or DA Form 2408. Leave blank when a remark is in the FAULT INFORMATION Block. Users under the manual record keeping system may use this block or leave it blank.

DELAY. Enter the Work Order Number, of the work request, to fix the fault or condition. Enter the Supply Requisition Number for a repair part that is required to repair the fault. Enter "2408-13-2" when a DA Form 2408-13-2 is needed to list related maintenance actions for clearing the fault or deficiencies. If none, leave blank.

WUC. ULLS-A and LAS users must enter the appropriate Work Unit Code, for faults and discrepancies. For reportable components/modules, or parts the WUC can be found in TB 1-1500-341-01. If a WUC has not been established that applies to the component/module, or area, enter the functional group code from table 1-10 or DA Form 2408-4-1 that best fits the fault or inspection. Leave blank when a remark is in the FAULT INFORMATION Block. Users under the manual record keeping system may use this block or leave it blank.

PART II--CORRECTING INFORMATION

DATE. The date (dd mmm yy) of the corrective action.

TIME. The time of day (24 hour clock) the corrective action was done.

ACFT HRS. The actual aircraft hours when the corrective action was completed.

ROUNDS. For armament system faults, discrepancies, and inspections, for which a DA Form 2408-4-1 is maintained, enter the cumulative rounds fired from DA Form 2408-4-1, block 5e.

ACTION CODE. For ULLS-A and LAS users, enter the maintenance action code, from table 1-9 or DA Form 2408, which best describes the action taken. Users under the manual record keeping system may use this block or leave it blank.

WUC. For ULLS-A and LAS users enter the Work Unit Code that best describes which component/module or part the corrective action pertains to. If a WUC has not been established for the component/module, part or area, enter the functional group code from table 1-10 or DA Form 2408 that best fits corrective action. The corrective action WUC may be different from the WUC in...
the FAULT INFORMATION block. Users under the manual record keeping system may use this block or leave it blank.

ACTION. Enter an abbreviated explanation of the action taken, for example, "Replaced rotor blade." The words "replaced," "repaired," "adjusted," or "erroneous entry," with other brief information about the action, will be enough to describe the action taken. DO NOT use the word "corrected" on this or any form.

PID. The personnel identifier of the person(s) accomplishing all or part of the maintenance action.

CAT. ULLS-A and LAS users shall enter the category of maintenance for the action taken -- "C" for crew level, "O" for AVUM level, "F" for AVIM level, or "D" for Depot level. When DA Form 2408-13-3, dated NOV 91, is used the category will be entered in the HOURS block preceding the man-hours expended by each individual who corrected the fault. If an individual performs both crew level and AVUM level work to perform the corrective action, they will enter their PID twice, once for crew and once for AVUM level maintenance hours. Users under the manual record keeping system may use this block or leave it blank.

HRS. ULLS-A and LAS users shall enter the direct "hands on" man-hours, in hours and tenths, expended during actual maintenance. Users under the manual record keeping system may use this block or leave it blank.

NOTE: When DA Form 2408-13-3, dated NOV 91, is used, the CMH, OMH, FMS, and DMH blocks will be left blank.

TIPID. The personnel identifier of the technical inspector who inspected the maintenance action.

TI MAN-HOURS. ULLS-A and LAS shall enter their man-hours, in hours and tenths, it took to inspect the action taken, and to complete the forms and records. Users under the manual record keeping system may use this block or leave it blank.
MAINTENANCE REQUEST REGISTER

For use of this form see DA PAM 738-750 and 738-751. The responsible agency is the Office of the Deputy Chief of Staff for Logistics.

Legend for Figure 3-7:
- **Preparation Instructions (by block and title) for completion of a DA Form 2405 (Maintenance Request Register)**

<table>
<thead>
<tr>
<th>JOB ORDER NUMBER</th>
<th>QUANTITY AND NOMENCLATURE</th>
<th>SERIAL OR USA REGISTRATION NUMBER</th>
<th>BRIEF DESCRIPTION OF WORK OR REMARKS</th>
<th>DATE JOB ORDER RECEIVED</th>
<th>DATE REPAIR STARTED</th>
<th>MAN-HOURS</th>
<th>LABOR</th>
<th>PARTS</th>
<th>COST OF PARTS</th>
<th>TOTAL COST OF JOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/0315-001</td>
<td>Helicopter</td>
<td>1177H Avn</td>
<td>Engine Deck, replacement</td>
<td>1076</td>
<td>1076</td>
<td>1076</td>
<td>1076</td>
<td>1076</td>
<td>1076</td>
<td>1076</td>
</tr>
<tr>
<td>8/0316-001</td>
<td>Xmas OR Cooler</td>
<td>1177H Avn</td>
<td>Seam Cracked</td>
<td>1077</td>
<td>1077</td>
<td>1077</td>
<td>1077</td>
<td>1077</td>
<td>1077</td>
<td>1077</td>
</tr>
<tr>
<td>8/0316-002</td>
<td>Hyd Tank Cracked</td>
<td>4231</td>
<td>Filter Neck Cracked</td>
<td>1078</td>
<td>1078</td>
<td>1078</td>
<td>1078</td>
<td>1078</td>
<td>1078</td>
<td>1078</td>
</tr>
<tr>
<td>8/0317-001</td>
<td>Helicopter</td>
<td>1177H Avn</td>
<td>Xmas Output Seal Leaking</td>
<td>1079</td>
<td>1079</td>
<td>1079</td>
<td>1079</td>
<td>1079</td>
<td>1079</td>
<td>1079</td>
</tr>
</tbody>
</table>

Figure 3-7. Sample of a completed DA Form 2405, Maintenance Request Register

Legend for Figure 3-7:
- **Preparation Instructions (by block and title) for completion of a DA Form 2405 (Maintenance Request Register)**

- **a. JOB ORDER NUMBER.** The WON from the DA Form 2407, or the Control Number from the DA Form 2410.

- **b. QUANTITY AND NOMENCLATURE.** The quantity and item name from DA Form 2407, or DA Form 2410. You can list only one item for each organization WON when this form is used for DA Form 2407.

- **c. WORK REQUESTED BY.** The name of the unit or activity asking for the work. Get this information from DA Form 2407, block 1b.

- **d. SERIAL OR USA REGISTRATION NUMBER.** The item serial number. Use seven numerical digits for aircraft serial number.

- **e. BRIEF DESCRIPTION OF WORK OR REMARKS.** The fault or the action to be taken. Action includes repair, MWO to be applied, one time inspection, and so on.

- **f. DATE JOB ORDER RECEIVED.** Enter the julian date the request was submitted.

- **g. DATE REPAIR STARTED.** Enter the julian date the repair or other action started.

- **h. DATE REPAIR FINISHED.** Enter the julian date the repair or other action was completed.

- **i. MAN-HOURS.** Enter the total number of man-hours, in hours and tenths, it took to do the repair or other action.

- **j. LABOR.** Leave blank or use as required locally.
<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>Enter UTC of submitting organization.</td>
</tr>
<tr>
<td>1b.</td>
<td>Enter name of submitting organization.</td>
</tr>
<tr>
<td>1c.</td>
<td>Enter number to be called when maint. is completed.</td>
</tr>
<tr>
<td>2a.</td>
<td>Enter UTC of supporting SAMS-2/SAMS-VTDA.</td>
</tr>
<tr>
<td>7. NDN</td>
<td>If work is requested while in transit and away from your support maintenance unit.</td>
</tr>
<tr>
<td>7. NDN</td>
<td>Enter utilization code. See DA Pamphlets 738-750 and 738-751.</td>
</tr>
<tr>
<td>8. NDN</td>
<td>Enter "Y" if reportable under AR 700-138. If not, leave blank.</td>
</tr>
</tbody>
</table>

SECTION II

Leave blank. To be completed by the support maintenance CO/USAV/AVMD/DEPOT.

SECTION III

Block 5. Enter the Type Maintenance Request Code. See DA Pamphlets 738-750 and 738-751.

Block 6. Enter ID associated with block 7. See DA Pamphlets 738-750 and 738-751.

Block 7. Enter the KSN or stock number of the item being submitted.

Block 8. Enter model of item being submitted.

Block 9. Enter nomenclature of item being submitted.

Block 10a. Enter Work Order Number (WON) in DOC/HED assigned when item is submitted. Otherwise, leave blank.

Block 10b. Enter End Item Code. See AMF.

Block 11. Enter serial number if item being submitted.

34a. Submitted by:

34b. Date:

35. Status:

36. Time:

SECTION III (Cont'd)

Block 12. Enter the quantity of items being submitted.

Block 13. Enter the maintenance priority designator determined from DA PAM 710-2-1.

Block 14. For DSU, USAV/AVMD/DEPOT use.

Block 15a. Enter the code that most accurately describes when the fault or deficiency was detected. See DA Pamphlets 738-750 and 738-751.

Block 15b. Select one. Enter the code. See DA Pamphlets 738-750 and 738-751.

Block 16. Enter the accumulated usage data in blocks, when equipment is subject to usage reporting.

Block 17. Enter the project code if one has been assigned. If not, leave blank.

Block 18. Enter DA Pamphlets 738-750 and 738-751.

Block 19. Enter "T" or "H" to indicate whether equipment is still under manufacturer's warranty.

Block 20. Enter the admin number assigned for property control purposes for the equipment being submitted.

Block 22. Enter level of work performed "O" for UNIT LEVELAV/AVMD/"P" for DSU/USAV/"H" for GSV/"D" for DEPOT/"K" for contractor or "L" for Spc Rpr Acl.

Block 23. Enter the signature of the CO or the CO's designated representative when the priority designator is 01-10. For priority designators 11-15, leave blank.

Block 24. Enter a brief description of the deficiencies or symptoms that you feel require attention at this level of maint. Block 25. Self-explanatory.

Figure 3-8. Sample of a completed DA Form 2407 to request support maintenance.
Legend for Figure 3-8:
Preparation Instructions (by block and title) for Completion of a DA Form 2407 (Maintenance Request) to Request Support Maintenance

NOTE: For SAMS Units, blocks 1, 5, 6, 7, 10a, 11, 12, 13, 15, 16, and 24 are mandatory if equipment is inoperable. Inoperable equipment is equipment that is NMC, according to AR 700-138, a subsystem of a reportable weapon system, or a command maintenance significant item.

PAGE NO. Enter the page number. A "1" if this is the first page.

NO OF PAGES. Leave this block blank.

SECTION I--CUSTOMER DATA

1a. UIC CUSTOMER. The UIC of the unit/organization that owns the aircraft, component/module or equipment.

1b. CUSTOMER UNIT NAME. The name of the unit in 1a.

1c. PHONE NO. The phone number (DSN/Commercial) of the unit in 1a.

2a. SAMS-2 UIC/SAMS-1/TDA. If in transit enter the owning unit’s UIC. Units not using SAMS, leave blank.

2b. UTILIZATION CODE. The appropriate Utilization Code from table 1-11.

2c. MCSR. Print the word "YES" or the letter "Y" if the item is reported under AR 700-138. This also applies to components and subsystems of an item or system that is reportable. If not reportable under AR 700-138 leave blank.

SECTION II--MAINTENANCE ACTIVITY DATA.

NOTE: To be completed by support maintenance AVIM or Depot.

SECTION III--EQUIPMENT DATA.

5. TYPE MNT REQ. The appropriate Type Maintenance Request Code from table 1-16. Units not using SAMS leave blank.

6. ID. The Identification Code that identifies the type of number you will enter in block 7--

 A -- National/NATO Stock Number.

 C -- Manufacturer’s Code and Reference Number (Part Number).

 D -- Management Control Number (MCN).

 P -- Other Numbers

7. NSN. The National Stock Number or appropriate number identified in block 6.

8. MODEL. The Mission Design Series of the equipment needing support maintenance.

9. NOUN. The name of the item needing support maintenance.

10a. ORG WON/DOC NO. The organization work order number or organization document number. For assignment of ORG WON for SAMS units, see paragraph 3-11. Units not using the SAMS system may assign a local WON. The local WON will be composed of 12 digits. The first six characters will be the owning unit or activity UIC, followed by the two digit year, and a four digit number for number of DA Forms 2407 submitted in numerical order.

10b. EIC. The End Item Code that applies to your equipment, see table D-1.

11. SERIAL NUMBER. The Serial Number of the item in block 9. If the form is used for more than one item, leave blank.

12. QTY. The number of items. Only one item will be listed if equipment is reportable under AR 700-138 and is NMC.

13. PD. The Priority Designator, see DA Pamphlet 710-2-1.

14. MALFUNCTION DESCRIPTION (for DSU, GSU/AVIM, DEPOT use). To be used by AVIM and Depot.

15a. FAILURE DETECTED DURING/WHEN DISCOVERED CODE. The appropriate When Discovered Code from table 1-4.

15b. FIRST INDICATION OF TROUBLE/HOW RECOGNIZED CODE. The appropriate How Recognized Code from table 1-5.

16. MILES/KILOMETERS/HOURS/ROUNDS.

 Miles -- Leave blank.

 Kilometers -- Leave blank.

 Hours -- For aircraft enter the aircraft hours from the current DA Form 2408-13. For components/modules and assemblies, enter the time since new as calculated from the DA Form 2408-16, or total cumulative operating hours calculated from DA Form 2408-16-1. If the item in block 9 is not an aircraft or is not listed in TB 1-1500-341-01, leave blank.

 Rounds -- If a weapon system or weapon system sub-component is entered in block 9, enter the total cumulative number of rounds fired. Get this information from the DA Form 2408-4-1 for the weapon system.

 If the weapon system does not have a DA Form 2408-4-1, leave blank. If this form is prepared for an AH-64 helicopter, enter the total cumulative rounds fired against the airframe from the current DA Form 2408-12.
17. **PROJECT CODE.** SAMS Units enter the assigned Project Code. If none is assigned, leave blank. Units not using SAMS may leave blank.

18. **ACCOUNT PROCESSING CODE.** The Account Processing Code (APC) if required by your unit, otherwise leave blank. The APC is a code prescribed locally for costing and budget identification of customers and organizations (reference TM 38-711-13).

19. **IN WARRANTY?** Enter "Y" or "N" to indicate whether equipment is still under manufacturer’s warranty. If "Y," submit one work request for each serial numbered item. If unknown leave blank.

20. **ADMIN NUMBER.** For aircraft and aviation components/modules, leave blank.

21. **REIMBURSABLE CUSTOMER.** For AVIM and Depot use.

22. **LEVEL OF WORK.** The code for the maintenance level of the activity doing the work --

 O -- Aviation Unit Maintenance (AVUM).

 F -- Aviation Intermediate Maintenance (AVIM).

 D -- Depot.

 K -- Contractor.

 L -- Special Repair Activity.

23. **SIGNATURE.** The commander or his or her designated representative will sign for all priority 01 through 10 requests. This signature approves the use of the PD.

24. **DESCRIBE DEFICIENCIES OR SYMPTOMS ON THE BASIS OF COMPLETE CHECKOUT AND DIAGNOSTIC PROCEDURES IN EQUIPMENT TM.**

 a. Briefly describe the fault or failure and give symptoms. When possible, use information from DA Forms 2408-13-1, 2408-13-2, 2408-13-3, or 2408-14-1. Do not ask for general or specific repairs, or for parts to be replaced. For example, do not tell support to "Replace the engine" or "Repair as needed."

 b. When the form is asking for work on more than one item with the same NSN, list the number of items and their serial numbers (if they have serial numbers). Equipment, components/modules, or subsystems of reportable equipment, or command maintenance significant equipment reported on the Material Condition Status Report must have its own separate form.

 c. When the form is requesting standard repair after a battle-damage expedient has been applied, print "BDAR" in bold letters before describing the fault or symptoms.

 d. If you need more room, use a DA Form 2407-1.

25. **REMARKS.** Enter any remarks that may assist the AVIM or Depot in repair of the item.

 a. When the form is prepared for components/modules or assemblies with a recoverability code of A, D, F, H, or L, list the end item NSN on the last line. The recoverability codes can be found in the RC Code column of the AMDF and as part of the item’s Source, Maintenance, and Recoverability (SMR) code in the parts manual.

 b. Indicate any historical forms sent with the component/module or aircraft.

34a. **SUBMITTED BY.** First name initial and last name of the person preparing the form.

34b. **DATE.** The date (yyddd) the form was given to support.

35a. **ACCEPTED BY.** First name initial and last name of the person accepting the work request.

35b. **STATUS.** The person accepting the request will enter the work request status code. Table 1-17 lists these codes.

35c. **DATE.** The date (yyddd) the request is accepted.

35d. **TIME.** The military time the request is accepted.
Figure 3-9. Sample of a completed DA Form 2407 to show work done at support maintenance
Legend for Figure 3-9:
Preparation Instructions (by block number and title) for Completion of a DA Form 2407 (Maintenance Request) to Show Work Done at AVIM and Depot Support Maintenance

PAGE NO. Already filled in by the unit requesting the support maintenance.

NO OF PAGES. The total number of pages required to complete the maintenance actions.

REQUIREMENT CONTROL SYMBOL. Leave blank.

SECTION I--CUSTOMER DATA. Already filled in by the unit requesting the support maintenance.

SECTION II--MAINTENANCE ACTIVITY DATA.

3a. WORK ORDER NUMBER (WON). Units under the SAMS system will enter the WON assigned by the support unit. Units not using the SAMS system may assign a local WON (see subpara 3-11c)

3b. SHOP. The shop section code assigned to identify a particular maintenance shop. Codes A through Z are assigned locally by each maintenance battalion operating under the SAMS system. Example: A = Avionics Shop, B = Battery Shop, E = Engine Shop, and so on. Units not using the SAMS system may leave blank.

3c. PHONE NO. The phone number (DSN/Commercial) of the maintenance activity doing the work.

4a. UIC SUPPORT UNIT. The Unit Identification Code of the maintenance activity.

4b. SUPPORT UNIT NAME. The unit name of the maintenance activity.

SECTION III--EQUIPMENT DATA.

5 THROUGH 13. Already filled in by the unit requesting the support maintenance.

15 THROUGH 20. Already filled in by the unit requesting the support maintenance.

21. REIMBURSABLE CUSTOMER (if Transit customer enter Y or N). Enter "Y" if the customer must pay the maintenance cost.

22 THROUGH 24. Already filled in by the unit requesting the support maintenance.

25. REMARKS.

a. When the item in block 7 needs on site or deferred maintenance, the AVIM or Depot activity will enter one of the following statements:

(1) Maintenance Request received on (date), on site maintenance scheduled for (date), signature of Production Control NCO.

(2) Maintenance Request received on (date) deferred, owner to return item on (date) for repair.

(3) Print "ORF" when an Operational Readiness Float was issued or would have been issued if a serviceable ORF asset was available.

b. For aviation night vision goggles, the AVIM unit will enter the new intensifier tube serial numbers whenever maintenance is performed to replace the tubes.

NOTE: The Receipt Copy 1 will be retained at the AVIM or Depot activity. The owning unit keeps all other copies until the on site repair is started or the deferred item is taken back to support.

26. TECHNICAL REFERENCES. The reference TM or technical publication as needed. Enter a statement of the partial mission capable (PMC) condition when it applies.

SECTION IV--TASK REQUIREMENTS DATA.

NOTE: This section of the work order can be used in various ways by the support maintenance activity: one task repair action for the work order, one task for each center/shop section that is to work on the equipment, or a task for each repair action necessary can be recorded. The general rule for task management is to allow the capturing of man-hours expended on equipment. The task sequence number is not to be confused with work request status code changes.

27a. FILE INPUT ACT CD. Units using the SAMS system enter the File Input Action Code. For example, A = Addition of a new record file, C = Correction to the file records, D = Deletion of the record from the file. Units not using the SAMS system may leave blank.

27b. TASK NO. The Task Number. Units not using the SAMS system may leave blank. How to use this field is up to the support maintenance activity of units using the SAMS system. At least one character (letter or number) must be used and task numbers must be different for each task listed. Some of the various ways this field can be used are as follows:

a. A single task for all work needed to be done (for example, task number 1).

b. A task for each work center/shop section for work needed to be done at each work center/shop section. The task number can be the shop section code.

c. A task for each action specified to be done by inspectors. The task number can then be the character for the shop followed by a different number for each task. For example, tasks A1, A2, and A3 may be used for the Avionics Shop and tasks S1 and S2 for the Sheetmetal Shop, and so on.
27c. ACT CODE. The appropriate Action Code from table 1-9.

27d. TASK DESCRIPTION. Brief description of task to be accomplished.

27e. QTY TO BE RPR. Number of items to be repaired.

27f. WORK CENTER. The Work Center Code of the shop that will do the task (see Unit SOP).

27g. FAILURE CODE. The appropriate Failure Code from tables 1-2 and 1-3.

27h. MH PROJ. The number of man-hours projected to accomplish the task.

27i. MH EXP. The number of man-hours actually expended to accomplish the task.

SECTION V--PART REQUIREMENTS

28b. TASK NO. The Task Number that generated the parts requirement.

28c. ID NO. The Identifying Number that identifies the type of information in the NSN field.
A -- National Stock Number.
C -- Manufacturer's Code and Reference Number.
D -- Management Control Number.
P -- Other Numbers.

28d. NSN OR PART NUMBER. The National Stock Number, Manufacturer's Part Number, or other number, as identified in block 28c for the required part.

28e. SFX CD. Units not using the SAMS system may leave blank. Units using the SAMS system, will enter the Suffix Identification Code when applicable. This code allows the operator to use the same record key (that is, WOG, Task Number, Identification Code, and NSN), when adding the same NSN to a file. It enables the operator to bypass edits that normally would reject as being duplicate. Each new entry should be in sequential order. Blank, A-Z, 0-9 are the allowed entries.

28f. QTY RQD. The quantity of part(s) needed.

28g. QTY ISSUED. The quantity of part(s) issued to the mechanic.

28h. NMCS CD. If failure to get a part will cause the item to become NMCS, enter "Y." If item will not become NMCS, enter "N."

28i. FAILURE CODE. The Failure Code from tables 1-2 and 1-3 that best describes why the item failed.

28j. STORAGE LOCATION. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the Storage Location Code, if it is a SSL item (see unit SOP).

28k. INITIALS. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the initials of the SSL clerk releasing the part to the mechanic.

28l. COST $. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the total cost of the part(s). Multiply 28l by the AMDF unit price.

28m. TOTAL MAN-HOURS. Add the Man-hours Expended in block 27i, on all pages of DA Forms 2407 and 2407-1, to get the total man-hours.

28n. TOTAL MAN-HOURS COSTS $. Multiply block 28m, Total Man-hours, by the current local labor rate for total man-hour costs. Units not using the SAMS system may leave blank.

28o. TOTAL PARTS COSTS $. Add the parts cost in block 28l, on all pages of DA Forms 2407 and 2407-1, to get the total parts costs. Units not using the SAMS system may leave blank.

SECTION VI--COMPLETION DATA

29. QTY RPR. The number of items repaired.

30. QTY CONDEMN. The number of items condemned.

31. QTY NRTS. The number of items not reparable at this activity.

32. EVAC WON. The WON assigned by the receiving maintenance unit if the item is evacuated.

33. EVAC UNIT NAME. The name of the unit to which the item is evacuated.

SECTION VII--ACTION SIGNATURES

34a and 34b. Already filled in.

35a. ACCEPTED BY. The first name initial and last name of the person accepting the work request.

35b. STATUS. The appropriate work request status code from table 1-17.

35c. DATE. The date (yyddd) that the work order was accepted.

35d. TIME. The military time that the work order was accepted.

36a. WORK STARTED BY. The first name initial and last name of the person starting the work.

36b. STATUS. The appropriate work request status code from table 1-17.
36c. **DATE.** The date (yyddd) the work was started.

36d. **TIME.** The military time the work was started.

37a. **INSPECTED BY.** The first name initial and last name of the commander or designated representative inspecting the work.

37b. **STATUS.** The appropriate status from table 1-17.

37c. **DATE.** The date (yyddd) the inspection was completed.

37d. **TIME.** The military time the inspection was completed.

38a. **PICKED UP BY.** The first name initial and last name of the person picking up the equipment.

38b. **STATUS.** The support maintenance clerk enters the work request status code "U" (Picked Up).

38c. **DATE.** The date (yyddd) the equipment was picked up.

38d. **TIME.** The military time the equipment was picked up.

Preparation Instructions (by block and title) for Completion of a DA Form 2407-1 (Maintenance Request--Continuation Sheet) to Record Maintenance Work at AVIM and Depot Support Maintenance.

NOTE: This form is used when more space is needed on the DA Form 2407. It can also be used to list parts and to control components in support maintenance activities.

NO OF PAGES. The total number of pages used (DA Forms 2407 and 2407-1).

REQUIREMENT CONTROL SYMBOL. The control number from the DA Form 2407. If there is no control number on the DA Form 2407, enter the WON from the DA Form 2407.

SECTION II--MAINTENANCE ACTIVITY DATA

3a. **WORK ORDER NUMBER (WON).** The WON from block 3a of the DA Form 2407.

3b. **SHOP SECTION CODE.** The shop section code assigned to identify a particular maintenance shop section. Codes A through Z are assigned locally by each maintenance battalion operating under the SAMS system. Units not using the SAMS system may leave blank.

3c. **PHONE NO.** The phone number (DSN/Commercial) from block 3c of the DA Form 2407.

SECTION III--EQUIPMENT DATA

25a. **REMARKS.** Use as a continuation to block 25 of the DA Form 2407 as needed, or prescribed locally.

NOTE: Fill in the following sections and blocks according to the instructions for the DA Form 2407.

SECTION IV--TASK REQUIREMENTS DATA (blocks 27a through 27i)

SECTION V--PART REQUIREMENTS (blocks 28a through 28o)
Figure 3-10. Sample of a completed DA Form 2407 to request application of an MWO

```
<table>
<thead>
<tr>
<th>MAINTENANCE REQUEST (For use of this form, see DA Pam 738-750 and 738-751; the proponent agency is DCSLOG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION I - CUSTOMER DATA</td>
</tr>
<tr>
<td>1a. UC/CUSTOMER NAME</td>
</tr>
<tr>
<td>A. C. W. A.</td>
</tr>
<tr>
<td>SECTION II - MAINTENANCE ACTIVITY DATA</td>
</tr>
<tr>
<td>2a. SAM'S-2 UC/CUSTOMER UNIT</td>
</tr>
<tr>
<td>83-2549-07/1-1</td>
</tr>
<tr>
<td>SECTIONS III &amp; IV - EQUIPMENT DATA</td>
</tr>
<tr>
<td>3a. M. M.</td>
</tr>
<tr>
<td>738-750</td>
</tr>
<tr>
<td>SECTION III - EQUIPMENT DATA</td>
</tr>
<tr>
<td>4a. UC SUPPORT UNIT</td>
</tr>
<tr>
<td>3rd A. B. W.</td>
</tr>
<tr>
<td>SECTION IV - REPAIR DATA</td>
</tr>
<tr>
<td>5. TYPE MAT REQ CODE</td>
</tr>
<tr>
<td>01-528</td>
</tr>
<tr>
<td>8. MODEL</td>
</tr>
<tr>
<td>10a. ORG WO/DD</td>
</tr>
<tr>
<td>738-750</td>
</tr>
<tr>
<td>14a. MALFUNCTION DESCRIPTION</td>
</tr>
<tr>
<td>FOR DU, LAW/VAVM, DEPOT use</td>
</tr>
<tr>
<td>16a. MILES/KM COMPONENTS/MOUNTS</td>
</tr>
<tr>
<td>17. PROJECT CODE</td>
</tr>
<tr>
<td>19. IN WARRANTY</td>
</tr>
<tr>
<td>20. ADMIN NO</td>
</tr>
<tr>
<td>21. REIMBURSEABLE CUSTOMER</td>
</tr>
<tr>
<td>22. LEVEL OF WORK</td>
</tr>
<tr>
<td>APPLY MWO 1-1520-279-50-03</td>
</tr>
</tbody>
</table>

25. REMARKS: COMPLETE LOG BOOK AND HISTORICAL RECORD MARCH 8 MONTH FILE

**PREPARATION INSTRUCTIONS FOR THIS PAGE**

**SECTION I**

Block 1a. Enter UC of submitting organization.
Block 1b. Enter name of submitting organization.
Block 1c. Enter number to be called when maint. is completed.
Block 2a. Enter UC of supporting SAM'S-2 UC/CUSTOMER UNIT.
Block 2b. Enter order number when maint. is submitted.
Block 2c. Enter the NSN or stock number of the item being submitted.
Block 2d. Enter model of item being submitted.
Block 2e. Enter nomenclature of item being submitted.
Block 2f. Enter Work Order Number (W/O)/DD when item is submitted. Otherwise leave blank.
Block 3a. Enter End Item Code. See AMDF.
Block 3b. Enter serial number of item being submitted.

**SECTION II**

Leave blank. To be completed by the support maintenance support or maint. depot.

**SECTION III**

Block 5. Enter the Type Maintenance Request Code. See DA Pamphlets 738-750 and 738-751.
Block 6. Enter ID associated with block 7. See DA Pamphlets 738-750 and 738-751.
Block 7. Enter the NSN or stock number of the item being submitted.
Block 8. Enter model of item being submitted.
Block 9. Enter nomenclature of item being submitted.
Block 10a. Enter Work Order Number (W/O)/DD when item is submitted. Otherwise leave blank.
Block 10b. Enter End Item Code. See AMDF.
Block 10c. Enter serial number of item being submitted.

**SECTION IV**

Block 12. Enter the quantity of items being submitted.
Block 13. Enter the maintenance priority designator determined from DA Pamphlet 710-3-1.
Block 14. For DU, LAW/VAVM, DEPOT use.
Block 15a. Enter the code that most accurately describes when the fault or deficiency was detected. See DA Pamphlets 738-750 and 738-751.
Block 15b. Select code. Enter the code. See DA Pamphlets 738-750 and 738-751.
Block 16. Enter the accumulated usage data in blocks when equipment is subject to usage reporting.
Block 17. Enter the project code if one has been assigned. If not, leave blank.
Block 18. Enter the DA Pamphlets 738-750 and 738-751.
Block 19. Enter "Y" or "N" to indicate whether equipment is still under manufacturer's warranty.
Block 20. Enter the admin number assigned for property control purposes for the equipment being submitted.
Block 21. For DU, LAW/VAVM/Depot use.
Block 22. Enter level of work performed. "O" for UNIT LEVEL/VAVM, "F" for DU, "H" for DU, "D" for DEPOT, "K" for contractor or "L" for Spc Rgr Act.
Block 23. Enter the signature of the CO or the CO's designated representative when the priority designator is 01-10. For priority designator 11-15, leave blank.
Block 24. Enter a brief description of the deficiencies or symptoms that you feel require attention at this level of maintenance.
Block 25. Self-explanatory.

DA FORM 2407, JUL 94

PREVIOUS EDITIONS OF DA FORM 2407 AND DA FORM 860 ARE OBSOLETE.

RECEIVED 1

DA PAM 738-751 • 15 March 1999

107
Legend for Figure 3-10:
Preparation Instructions (by block and title) for Completion of a DA Form 2407 (Maintenance Request) to Request Application of an MWO.

PAGE NO. Enter the page number.
NO OF PAGES. Leave this block blank.

SECTION I--CUSTOMER DATA

1a. UIC CUSTOMER. The UIC of the unit/organization that owns the aircraft, component/module or equipment to be modified.

1b. CUSTOMER UNIT NAME. The name of the unit in 1a.

1c. PHONE NO. The phone number (DSN/Commercial) of the unit in 1a.

2a. SAMS-2 UIC/SAMS-1/TDA. If intransit enter the owning unit’s UIC. Units not using SAMS, leave blank.

2b. UTILIZATION CODE. The appropriate Utilization Code from table 1-11.

2c. MCSR. Print the word "YES" or the letter "Y" if the item is reported under AR 700-138. This also applies to components and subsystems of an item/system that is reportable. If not reportable under AR 700-138 leave blank.

SECTION II--MAINTENANCE ACTIVITY DATA.

NOTE: To be completed by support maintenance AVIM or Depot.

SECTION III--EQUIPMENT DATA.

5. TYPE MNT REQ. The appropriate Type Maintenance Request Code from table 1-18. Units not using the SAMS system may leave blank.

6. ID. The Identification Code that identifies the type of number you will enter in block 7--
   A -- National/NATO Stock Number.
   C -- Manufacturer’s Code and Reference Number (Part Number).
   D -- Management Control Number (MCN).
   P -- Other Numbers

7. NSN. The National Stock Number or appropriate number identified in block 6.

8. MODEL. The Mission Design Series of the equipment needing the MWO.

9. NOUN. The name of the item needing the MWO.

10a. ORG WON/DOC NO. The organization work order number or organization document number. For assignment of ORG WON for SAMS units (see para 3-11). Units not using the SAMS system may assign a local WON. The local WON will be composed of 12 digits. The first six characters will be the owning unit or activity UIC, followed by the two digit year, and a four digit number for number of DA Forms 2407 submitted in numerical order.

10b. EIC. The appropriate End Item Code that applies to your equipment, from appendix D-1.

11. SERIAL NUMBER. The Serial Number of the item in block 9. If the form is used for more than one item, leave blank.

12. QTY. The number of items being modified. Only one item will be listed if equipment is reportable under AR 700-138 and it is NMC.

13. PD. The Priority Designator, see DA Pamphlet 710-2-1.


15a. FAILURE DETECTED DURING/WHEN DISCOVERED CODE. Leave blank.

15b. FIRST INDICATION OF TROUBLE/HOW RECOGNIZED CODE. Leave blank.

16. MILES/KILOMETERS/HOURS/ROUNDS.
   Miles -- Leave blank.
   Kilometers -- Leave blank.
   Hours -- For aircraft enter the aircraft hours from the current DA Form 2408-13. For components/modules and assemblies, enter the time since new as calculated from the DA Form 2408-16 or total cumulative operating hours calculated from DA Form 2408-16-1. If the item in block 9 is not an aircraft or is not listed in TB 1-1500-341-01, leave blank.
   Rounds -- If a weapon system or weapon system sub component is in block 9, enter the total cumulative number of rounds fired. Get this information from the DA Form 2408-4-1 for the weapon system. If the weapon system does not have a DA Form 2408-4-1, leave blank. If this form is prepared for an AH-64 helicopter, enter the total cumulative rounds fired against the airframe from the current DA Form 2408-12 or 2408-13. Leave blank when it does not apply.

17. PROJECT CODE. SAMS Units enter the assigned Project Code. If none is assigned, leave blank. Units not using SAMS may leave blank.

18. ACCOUNT PROCESSING CODE. The Account Processing Code (APC) if required by your unit, otherwise leave blank. The APC is a code prescribed locally for costing and budget identification of customers and organizations (reference TM 38-711-13).

19. IN WARRANTY? Leave blank.
20. **ADMIN NUMBER.** For aircraft and aviation components/modules, leave blank.

21. **REIMBURSABLE CUSTOMER.** For AVIM and Depot use.

22. **LEVEL OF WORK.** The code for the maintenance level of the activity doing the work:
   - O -- Aviation Unit Maintenance (AVUM).
   - F -- Aviation Intermediate Maintenance (AVIM).
   - D -- Depot

23. **SIGNATURE.** The commander or his or her designated representative will sign for all priority 01 through 10 requests. This signature approves the use of the PD.

24. **DESCRIBE DEFICIENCIES OR SYMPTOMS ON THE BASIS OF COMPLETE CHECKOUT AND DIAGNOSTIC PROCEDURES IN EQUIPMENT TM.**
   - a. Enter the MWO number(s). If more than one MWO is listed, make sure all the MWOs apply to each component or end item covered by the form.
   - b. When asking to have the MWOs applied to components, list the component's end item NSN.
   - c. Items and components of items listed in AR 700-138 cannot be combined on one form. Make out a separate DA Form 2407 for those items needing MWOs.
   - d. Components/modules listed in TB 1-1500-341-01, also require a separate DA Form 2407.
   - e. If you need more room, use a DA Form 2407-1.

25. **REMARKS.**
   - a. When a MWO is applied to components or assemblies, list the component, assembly, and item NSN.
   - b. List the Procurement Request Order Number (PRON), the Fiscal Station Number, and the MFP or MOU identification number.
   - c. Indicate any historical forms sent with the component/module or aircraft.

34a. **SUBMITTED BY.** The first name initial and last name of the person preparing the form.

34b. **DATE.** The date (yyddd) the form was given to support.

35a. **ACCEPTED BY.** The first name initial and last name of the person accepting the work request.

35b. **STATUS.** The person accepting the request will enter the work request status code. Table 1-17 lists these codes.

35c. **DATE.** The date (yyddd) the request is accepted.

35d. **TIME.** The military time the request is accepted.
**Figure 3-11. Sample of a completed DA Form 2407 to report an MWO done at Support Maintenance**

For use of this form, see DA Pam 738-750 and 738-751.

The proponent agency is DCSLOG.

---

**Section I - Customer Data**

- **Customer Service:** UA 21, 72, AN
- **Customer Name:** UA 21, 72, AN
- **Phone No.:** 72-728-988

**Section II - Equipment Data**

- **Type of MOW:** HELICOPTER
- **Model:** NHO

**Section III - Task Requirements Data**

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Description</th>
<th>SF 138</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1128</td>
<td>ENGINES</td>
<td>17 A</td>
<td>1</td>
</tr>
<tr>
<td>1126</td>
<td>ENGINES</td>
<td>5 A</td>
<td>1</td>
</tr>
</tbody>
</table>

**Section IV - Maintenance Activity Data**

- **Work Order Number:** 110 DA PAM 738-751 • 15 March 1999
- **Shop:** METAL
- **Phone No:** 932-3310

**Section V - Part Requirements Data**

- **Task No.**
- **ID No.**
- **Status**
- **Location**
- **Initials**

**Section VI - Completion Data**

- **Task No.**
- **QTY Condensed**
- **QTY Shipped**
- **Evac. Unit**

**Section VII - Action Signatures**

- **Submitted By:**
- **Accepted By:**
- **Inspected By:**
- **Picked Up By:**

---

NAP COPY 2

---

110 DA PAM 738–751 • 15 March 1999
Legend for Figure 3-11:
Preparation Instructions (by block number and title) for Completion of a DA Form 2407 (Maintenance Request) to Report MWO Application at Support Maintenance

**PAGE NO.** Already filled in by the unit requesting the MWO application.

**NO OF PAGES.** The total number of pages required to complete the maintenance actions.

**REQUIREMENT CONTROL SYMBOL.** Leave blank.

**SECTION I—CUSTOMER DATA.** Already filled in by the unit requesting the MWO application.

**SECTION II—MAINTENANCE ACTIVITY DATA.**

3a. **WORK ORDER NUMBER (WON).** Units under the SAMS system will enter the WON assigned by the support unit. Units not using the SAMS system may assign a local WON (see subpara 3-11c).

3b. **SHOP.** The shop section code assigned to identify a particular maintenance shop. Codes A through Z are assigned locally by each maintenance battalion operating under the SAMS system. Example: A = Avionics Shop, B = Battery Shop, E = Engine Shop, and so on. Units not using the SAMS system may leave blank.

3c. **PHONE NO.** The phone number (DSN/Commercial) of the maintenance activity applying the MWO.

4a. **UIC SUPPORT UNIT.** The Unit Identification Code of the maintenance activity applying the MWO.

4b. **SUPPORT UNIT NAME.** The unit name of the maintenance activity applying the MWO.

**SECTION III—EQUIPMENT DATA.**

5 THROUGH 13. Already filled in by the unit requesting the MWO application.

14. **MALFUNCTION DESCRIPTION (for DSU, GSU/AVIM, DEPOT use).** Leave blank.

15 THROUGH 20. Already filled in by the unit requesting the MWO application.

21. **REIMBURSABLE CUSTOMER (if Intransit customer enter Y or N).** Enter "Y" if the customer must pay the maintenance cost.

22 THROUGH 24. Already filled in by the unit requesting the MWO application.

25. **REMARKS.**

   a. When the item in block 7 needs on site or deferred maintenance, the AVIM or Depot activity will enter one of the following statement: “Maintenance Request received on (date), or owner to return item for modification on (date).”

   b. Use as needed locally or as prescribed by SOP.

**NOTE:** The Receipt Copy 1 will be retained at the AVIM or Depot activity. The owning unit keeps all other copies until the on site repair is started or the deferred item is taken back to support.

**SECTION IV—TASK REQUIREMENTS DATA.**

27a. **FILE INPUT ACT CD.** Units using the SAMS system enter the File Input Action Code. For example, A = Addition of a new record file, C = Correction to the file records, D = Deletion of the record from the file. Units not using the SAMS system may leave blank.

27b. **TASK NO.** Leave blank.

27c. **ACT CODE.** The Action Code “H” for the MWO application and “G” for the final inspection of the application (see table 1-9).

27d. **TASK DESCRIPTION.**

   a. Enter the ID and NSN of the item getting the MWO. When the MWO changes the item’s NSN, list the old NSN.

   b. Directly below the ID and NSN enter the MWO number.

   c. When applying one MWO to several items with the same NSN, list the MWO once, but list the NSNs on separate lines. Use DA Form 2407-1 if more space is required.

   d. When applying more than one MWO to an item, list the MWOs in numerical order.

**NOTE:** When a component/module listed in TB 1-1500-341-01 changes NSN, Part Number, and/or Serial Number due to a MWO, DA Forms 2410 must be submitted losing the old NSN, Part Number, and/or Serial Number. Update DA Forms 2408-5, 2408-5-1, 2408-16 or 2408-16-1 as necessary to reflect the MWO and changed data.

27e. **QTY TO BE RPR.** Number of items to be modified.

27f. **WORK CENTER.** Enter MIL when military personnel apply the MWO, CIV when civilians do the work, or CONTR when contractors do the work.

27g. **FAILURE CODE.** Enter the appropriate Failure Code –
a. 797 -- MWO previously complied with.

b. 798 -- MWO not applicable.

c. 801 -- MWO compliance.

d. 802 -- Equipment previously modified/restored to original configuration (MWO removal).

27h. MH PROJ. Enter the number of man-hours projected to accomplish the task.

27i. MH EXP. Enter the number of man-hours actually expended to accomplish the task.

a. Break the man-hours out by civilian, to include contractor or contractor field team, and military.

b. If the MWO was previously applied and you do not know the actual hours, enter the estimated man-hours from the MWO publication.

SECTION V--PART REQUIREMENTS

NOTE: If no extra work is done during application, leave this section blank or use as needed locally. If work is completed along with the MWO application, complete blocks 28a through 28l.


28b. TASK NO. The Task Number that generated the parts requirement. Units not using the SAMS system may leave blank.

28c. ID NO. The Identifying Number that identifies the type of information in the NSN field.

A -- National Stock Number.
C -- Manufacturer’s Code and Reference Number.
D -- Management Control Number.
P -- Other Numbers.

28d. NSN OR PART NUMBER. The National Stock Number, Manufacturer’s Part Number, or other number, as identified in block 28c for the item modified.

28e. SFX CD. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the Suffix Identification Code when applicable. This code allows the operator to use the same record key (that is, WOG, Task Number, Identification Code, and NSN), when adding the same NSN to a file. It enables the operator to bypass edits that normally would reject as being duplicate. Each new entry should be in sequential order. Blank, A-Z, 0-9 are the allowed entries.

28f. QTY RQD. The quantity of part(s) needed.

28g. QTY ISSUED. The quantity of part(s) issued to the mechanic.

28h. NMCS CD. If failure to get a part will cause the item to become NMCS, enter "Y." If item will not become NMCS, enter "N."

28i. FAILURE CODE. The Failure Code from tables 1-2 and 1-3 that best describes why the item failed.

28j. STORAGE LOCATION. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the Storage Location Code, if it is a SSL item (see unit SOP).

28k. INITIALS. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the initials of the SSL clerk releasing the part to the mechanic.

28l. COST $. Units not using the SAMS system may leave blank. Units using the SAMS system will enter the total cost of the part(s). Multiple 28g by the AMDF unit price.

28m. TOTAL MAN-HOURS. Add the Man-hours Expended in block 27i, on all pages of DA Forms 2407 and 2407-1, to get the total man-hours.

28n. TOTAL MAN-HOURS COSTS $. Multiply block 28m, Total Man-hours, by the current local labor rate for total man-hour costs. Units not using the SAMS system may leave blank.

28o. TOTAL PARTS COSTS $. Add the parts cost in block 28l, on all pages of DA Forms 2407 and 2407-1, to get the total parts costs. Units not using the SAMS system may leave blank.

SECTION VI--COMPLETION DATA

NOTE: If no extra work is done during modification this section may be left blank or use as needed locally.

29. QTY RPR. The number of items repaired.

30. QTY CONDEMN. The number of items condemned.

31. QTY NRTS. The number of items not repairable at this activity.

32. EVAC WON. The WON assigned by the receiving maintenance unit if the item is evacuated.

33. EVAC UNIT NAME. The name of the unit to whom the item is evacuated.

SECTION VII--ACTION SIGNATURES

34a and 34b. Already filled in.

35a. ACCEPTED BY. The first name initial and last name of the person accepting the work modification request.

35b. STATUS. The appropriate work request status code from table 1-17.

35c. DATE. The date (yyddd) that the work request was accepted.
35d. TIME. The military time that the work request was accepted.

36a. WORK STARTED BY. The first name initial and last name of the person assigned the job of applying the MWO.

36b. STATUS. The appropriate work request status code from table 1-17.

36c. DATE. The date (yyddd) the work was started.

36d. TIME. The military time the work was started.

37a. INSPECTED BY.

a. When MWOs are applied by an ARMY maintenance activity, a technical inspector assigned will monitor the application, make a final inspection, and sign his or her first name initial and last name.

b. When MWOs are applied by a contractor, the contracting officer's representative will monitor the application, make a final inspection, and sign his or her first name initial and last name.

c. When MWOs are applied by a contract field team, the AMCOM NMP representative will monitor the application, make a final inspection, and sign his or her first name initial and last name.

37b. STATUS. The appropriate status from table 1-17.

37c. DATE. The date (yyddd) the inspection was completed.

37d. TIME. The military time the inspection was completed.

38a. PICKED UP BY. The first name initial and last name of the person picking up the equipment.

38b. STATUS. The support maintenance clerk enters the work request status code "U" (Picked Up).

38c. DATE. The date (yyddd) the equipment was picked up.

38d. TIME. The military time the equipment was picked up.
Legend for Figure 3-12:
Preparation Instructions (by block title) for Completion of Phase, PMS, or Periodic Maintenance Checklist

PHASE (PMS OR PERIODIC) NO. The Phase, PMS, Periodic Inspection number.

Area Name and No. Preprinted.

Aircraft Serial No. The aircraft Serial Number (seven numeric digits).

Date. The date (dd mmm yy) the checklist page was made out.

Inspect Phase No’s. Preprinted.

Inspection Requirements. Preprinted.

Status. Leave blank.

Faults and/or Remarks. If aircraft, repair part, component, or system disassembly is required to complete an inspection requirement enter "DA Form 2408-13-2," and the page number of the form. If a fault or discrepancy is found enter "DA Form 2408-13-1" or "DA Form 2408-13-3," and the page number of the form. No other entries will be made in this block.

Action Taken. When no faults or deficiencies are discovered, the person completing each inspection requirement task/seq. no. will enter "Insp OK." When faults or deficiencies are discovered, the person who found the fault or deficiency will enter "Insp Compl." For units maintaining forms and records manually, if a DA Form 2408-18 inspection requirement is listed as the Inspection Task enter "Completed" or "Compl" and the date of completion. Then update the date due on the DA Form 2408-18. For units under ULLS-A or LAS, if a DA Form 2408-18 inspection requirement is listed as the Inspection Task enter "Insp Compl" and enter the DA Form 2408-18 inspection on a DA Form 2408-13-1, if not already printed on the DA Form 2408-13-1, for completion. When the Inspection Task does not apply to the aircraft, as equipped, or to the phase being completed, enter "N/A."

Initial. The person who completes the inspection task or determines the task is N/A will enter his or her PID opposite the first line of the Action Taken entry.
Figure 3-13. Sample of a completed DA Form 2408-13-2 used to document disassembly to complete an inspection requirement during phase maintenance.

Legend for Figure 3-13:
Preparation Instructions (by block number and title) for Completion of a DA Form 2408-13-2 (Related Maintenance Actions Record) when Documenting Disassembly, to Complete an Inspection Task, in conjunction with the Maintenance Inspection Checklist.

<table>
<thead>
<tr>
<th>1. STATUS</th>
<th>2. SERIAL NUMBER</th>
<th>3. SYSTEM CODE</th>
<th>4. TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6415290</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. FAULT DATE

6. FAULT NUMBER

7. FAULT

8. STA

9. RELATED MAINTENANCE ACTIONS

10. ACTION

11. PID

12. CAT

13. MMH

NOTE: DA Forms 2408-13-2 used to document related maintenance actions for correction of faults or deficiencies entered on a DA Form 2408-13-1 will become part of the Flight Pack and numbered as part of the Flight Pack.

1. STATUS. Leave blank.

2. SERIAL NUMBER. The aircraft Serial Number (seven numeric digits).

3. SYSTEM CODE. Leave blank.

4. TIME. Leave blank.

5. FAULT DATE. Leave blank.

6. FAULT NUMBER. Leave blank.
7. **FAULT.** The Phase, Periodic, or PPM Inspection number and area sequence number.

8. **STA.** The proper condition status symbol, according to the seriousness of each related maintenance action in block 9 (see para 1-8).

9. **RELATED MAINTENANCE ACTIONS.** A short description of the related maintenance actions needed to complete the inspection area listed in block 7. Enter only one related maintenance action on each line provided. Use as many lines and forms as needed to enter related maintenance actions to complete the inspection area.

10. **ACTION.** The action taken to complete the related maintenance action.

11. **PID.** The personnel identifier of the person completing the related maintenance action. They will also place their last name initial over the status symbol in block 8.

A red "X" or circled red "X," must be inspected by a designated representative appointed by the commander. If the action taken is satisfactory, enter the inspector's stamp or statement "Insp OK" and signature above the corrective action in block 10. The inspector will then place his or her last name initial over the status symbol.

**NOTE:** If the inspector discovers other fault(s), record them on the next open Fault Information block on the DA Form 2408-13-1 or 2408-13-3. ULLS-A or LAS users must enter the faults on a DA Form 2408-13-1.

12. **CAT.** The level of maintenance for the action taken ("C" for crew level, "O" for AVUM level, "F" for AVIM level, or "D" for Depot level).

13. **MMH.** Units that use ULLS-A or LAS will enter the man-hours it took to complete the action. All other units may leave blank.
Figure 3-14A. Sample of a completed DA Form 2410 for gain to the Army inventory. (Illustration #1)
Legend for Figure 3-14B:
Preparation instructions (by block number and title) for completion of a DA Form 2410 for Gains to the Army Inventory.

COPY 1 of DA Form 2410 is not used for gains, discard it.

COPY 2–SECTION I–IDENTIFICATION

1. NOMENCLATURE. The item name.

2. NSN. The National Stock Number of the item.

3. PART NUMBER. The Part Number of the item.

4. SERIAL NUMBER. The Serial Number of the item.

Do not enter more than one Serial Number in this block.

5. CAGE CODE. Enter the Contractor and Government Entity Code for the item (found on the item data plate).

6. NO. OF PREV O/Hs. Enter the number of times that the item has been overhauled. If the item has never been overhauled, enter "0." For Retirement Life Components/Modules and Condition Components/Modules enter "RC" or "CC" in this block.

7. TIME SINCE LAST INST (HRS). Enter the number of hours, to the nearest hour, that the item has operated since it was last installed. If the item is new, enter "0."

8. TIME SINCE NEW (HRS). Enter the total number of hours, to the nearest hour, that the item has been operated since it was new or rebuilt. If the item is new,
or has just been rebuilt, enter "0." For H-60 series APUs without an installed hour meter enter "0."

9. TIME SINCE OVERHAUL (HRS). If the item has been overhauled before, enter the number of hours, to the nearest hour, that the item has operated since the last overhaul. If the item has never been overhauled enter "0." If the item is a RC or CC item, enter "RC" or "CC." For H-60 series APUs, enter "0."

10. FAILURE CODE. For new items enter "799." For other items enter the appropriate failure code from tables 1-2 or 1-3.

11. POS. Leave blank.

12. HSF. For T703 engines, enter the total hot section factors.

13. METER HRS. Enter the hourmeter reading for items designated by TB 1-1500-341-01 to be tracked using meter hours.

14. WUC. Enter the work unit code that applies.

15. COMPONENT CUMULATIVE COUNT/HOURS. For T700 series engines, components/modules, and sub-components enter the total cumulative counts/hours for the item in block 1. This entry is also required for history recorders. Enter only operating hours, block 15.d., for components/modules, entered on the reverse side of the engine DA Form 2408-16-1, that do not require a separate DA Form 2408-16-1. If the item is new enter "0."

15a. LCF 1. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF1 counts.

15b. LCF 2. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 2 counts.

15c. TTI. For T700 series engines, components/modules, or subcomponents enter the total cumulative TTI counts.

15d. OP HOURS. For T700 series engines, components/modules, or subcomponents enter the total cumulative operating hours.

16. APU SSN. For H-60 series aircraft APUs enter the total starts since new. If the APU is new enter "0."

17. APU HRS. For H-60 series aircraft APUs with an installed hour meter, enter the total hours since new for the APU. If the APU is new enter "0."

18. APU SSO. For H-60 series aircraft APUs, enter the number of starts since the last overhaul. If the APU is new or has never been overhauled, enter "0."

19. VERSION. Enter the software version for the item entered in block 1 when required by TB 1-1500-341-01.

COPY 2--SECTION III--REPAIR/OVERHAUL/GAIN.

NOTE: Leave blocks 20 through 34 blank.

39. DATE CHECKED. Enter the Julian date that the item, in block 1, was declared serviceable by the manufacturer/contractor or the Julian date the item was accepted in the Army inventory by the receiving unit.

40. PID AND TELEPHONE NUMBER. Enter the signature, PID and telephone number of the manufacturer's/contractor’s representative declaring the item serviceable. Army units receiving items without DA Form 2410 will fill out the forms and enter their PID and phone number (DSN/Commercial).

41. UIC (THIS ACTION). Enter the Unit Identification Code for the organization taking this action. If a contractor, enter the CAGE code prefixed with a "K."

42. MAN-HOURS TO REPAIR/OVERHAUL. Leave blank.

43. INSPECTION AND ACTION CODES. Enter an "A" in the small block in front of "(A) SERV" for serviceable items, or the appropriate letter in other blocks as it applies. Do not use check marks.

44. REASON FOR GAIN. Enter "A" for new manufactured items, or other codes from table 1-14 that best describes the reason for gain.

45. CONTRACT NUMBER. Enter the contract number that the item in block 1 was procured under. Use this block for "A" gains only.

NOTE: Leave blocks 46 through 48 blank.

REMARKS. Provide any information not considered routine.

COPY 3--SECTION IV--INSTALLATION/LOSS.

70. INSPECTION AND ACTION CODES. Enter "A" in front of "(A) SERV" for serviceable items, or the appropriate letter in other block as it applies. Do not use check marks.

NOTE: Mail Copy 2 to AMCOM. Copy 3 remains with the component/module until installation.
Legend for Figure 3-15:
Preparation Instructions (by block number and title) for completion of a DA Form 2410 for the normal removal, evacuation, repair, and installation cycle. (Removal and Evacuation).

COPY 1--SECTION I-IDENTIFICATION

1. NOMENCLATURE. The item name.

2. NSN. The National Stock Number of the item.

3. PART NUMBER. The Part Number of the item.

4. SERIAL NUMBER. The Serial Number of the item. Do not enter more than one Serial Number in this block.

5. CAGE CODE. The Contractor and Government Entity Code for the item, (found on the item data plate).

6. NO. OF PREV O/Hs. Enter the number of times that the item has been overhauled. Get this information from block 6d of the DA Form 2408-16 or block 6a of DA Form 2408-16-1 for H-60 series aircraft APUs. If the item has never been overhauled, enter “0.” For Retirement Life Components and Condition Components enter “RC” or “CC” in this block.

7. TIME SINCE LAST INSTL (HRS). Enter the number of hours, to the nearest hour, the item has been operated since it was last installed. Get this information from DA Form 2408-16 by subtracting block 6e from 6f. For T700 series engines get this information from the DA Form 2408-16-1 by subtracting the total cumulative hours at installation from the total cumulative hours at removal. For H-60 series APUs get this information...
from the DA Form 2408-16-1. For H-60 series APUs without an installed hour meter enter "0."

8. TIME SINCE NEW (HRS). Enter the total number of hours, to the nearest hour, that the item has been operated since it was new or rebuilt. Get this information from block 6i of the DA Form 2408-16. For T700 series engines get this information from the DA Form 2408-16-1. For H-60 series APUs with an installed hour meter, enter the total hours since new. For H-60 series APUs without an installed hour meter enter "0."

9. TIME SINCE OVERHAUL (HRS). If the item has been overhauled before, enter the number of hours, to the nearest hour, that the item has operated since the last overhaul. Get this information from the DA Form 2408-16; subtract block 6e from 6f, then add block 6g. When the item has never been overhauled, enter "0." If the item is a RC or CC item, enter "RC" or "CC."

10. FAILURE CODE. Enter the appropriate Failure Code (Tables 1-2 and 1-3).

11. POS. Enter the position that the engine was installed in, number 1 for left engine and number 2 for right engine.

12. HSF. For T703 engines, enter the total number of hot section factors.

13. METER HRS. Enter the hourmeter reading for items designated by TB 1-1500-341-01 to be tracked using meter hours.

14. WUC. Enter the work unit code that applies.

15. COMPONENT CUMULATIVE COUNT/HOURS. For T700 series engines, components/modules, and sub components enter the total cumulative counts/hours for the item in block 1. This entry is also required for history recorders. Enter only operating hours, block 15.d., for components/modules, entered on the reverse side of the engine DA Form 2408-16-1, that do not require a separate DA Form 2408-16-1. If the item is new enter "0."

15a. LCF 1. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 1 counts.

15b. LCF 2. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 2 counts.

15c. TTI. For T700 series engines, components/modules, or subcomponents enter the total cumulative TTI counts.

15d. OP HOURS. For T700 series engines, components/modules, or subcomponents enter the total cumulative operating hours.

16. APU SSN. For H-60 series aircraft APUs enter the total starts since new. If the APU is new enter "0."

17. APU HRS. For H-60 series aircraft APUs with an installed hour meter, enter the total hours since new for the APU. If the APU is new enter "0."

18. APU SSO. For H-60 series aircraft APUs, enter the number of starts since the last overhaul. If the APU is new or has never been overhauled, enter "0."

19. VERSION. Enter the software version for the item entered in block 1 when required by TB 1-1500-341-01.

COPY 1--SECTION II--REMOVAL DATA

This section is completed by the organization that removed the reportable item from its next higher assembly.

NOTE: Blocks 20 through 23 will be left blank if the next higher assembly is an aircraft.

20. REMOVED FROM (NOMEN NHA). The name of the next higher assembly, from which the item in block 1 was removed. This information is on the DA Form 2408-16, block 1, or DA Form 2408-16-1, block 3.

21. NSN (NHA). The National Stock Number of the item in block 20.

22. PART NUMBER (NHA). The Part Number of the item in block 20.

23. SERIAL NUMBER (NHA). The Serial Number of the item in block 20.

24. HOURS (NHA). The current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. When the item, in block 20, is a component, enter the components operating hours since new.

25. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 20. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 20, leave blank.

26. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU removal. If the APU does not have a start meter, leave blank.

27. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of APU removal. If the APU does not have a hour meter, leave blank.

28. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 20, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing. For H-60 series APUs leave blank.

29. HISTORY RECORDER READING. If a T700 series engine is entered in block 1 or block 20, enter the current reading from the engine history recorder.

30. ACFT MODEL. The aircraft Mission Design Series
if the next higher assembly is an aircraft, otherwise leave blank.

31. ACFT S/N. The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

32. MAINT LEVEL. The Maintenance Level ("O" for AVUM, "F" for AVIM, "D" for Depot) of the unit/activity doing the removal.

33. DATE REMOVED. The Julian date that the removal action was completed.

34. UIC. The Unit Identification Code for the organization taking this action. If a contractor, enter the CAGE code prefixed with a "K."

35. MAN-HOURS (To Remove). The man-hours it took to remove the item, in hours and tenths. (See Time Conversion Codes, table 1-12, at the end of chapter 1 or the backside of DA Form 2408.)

36. PID AND TELEPHONE NUMBER. The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID will be used at the national level to clarify entries.

37. MALFUNCTION CODE. The Malfunction Effect Code (table 1-6 or the front side of DA Form 2408) that most closely described the effect the malfunction had on the mission.

38. WHEN DISCOVERED. The When Discovered Code (Table 1-4 or the front side of DA Form 2408) that identifies when the failure was first detected.

REMARKS. If a "Corrected Copy" indicate the block numbers that were corrected. If the total cumulative counts and hours on a T700 series engine or module/component were calculated due to history recorder failure make an entry stating all pertinent information. Make this entry in the remarks block of copy 2 also.

NOTE: Provide any information that may be helpful to the higher level maintenance activity to repair the item, to include location of leaks, breakage, or suspected reason for the fault in the REMARKS block on Copy 2. Complete information can save time and dollars. Mail Copy 1 to AMCOM. Copies 2 and 3 are shipped with the item.
Legend for Figure 3-16:
Preparation Instructions (by block number and title) for completion of a DA Form 2410 for Normal Removal, Evacuation, Repair, and Installation Cycle (Repair/Overhaul).

COPY 2--SECTION III--REPAIR/OVERHAUL/GAIN

This section appears on the lower half of Copy 2. Blocks 1 through 34 should already be filled in. Entries in this section, as well as block 70 of Copy 3, are filled in by the organization that returns the item to a serviceable condition. This organization will also update blocks 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 43, and 70, as necessary, by lining out existing entries and providing the correct data. For T703 engines, after completion of repair/overhaul line out the HSF counts in block 12 of copies 2 and 3 and enter the updated HSF counts. The repair facility will also make an entry, in block 7 of the engine DA Form 2408-16, showing the HSF counts after repair/overhaul. After repair, to ensure serviceability, the cumulative counts/hours must be updated on T700 series engine components/modules, or sub components that have operated on a slave engine. Calculate the LCF 1, LCF 2, TTI, and OP HOURS accumulated while operating on the slave engine and add to the counts/hours in block 15. Line out the old counts and hours and enter the updated counts and hours in block 15. Line out the old counts and hours and enter the updated counts and hours in block 15. Update the time since new in block 8. Make sure that all blocks that were updated on Copy 2 are updated on Copy 3. The DA Form 2408-16-1, line 1, must also be updated.

39. DATE CHECKED. The Julian date that the action shown in block 43 was completed.

40. PID AND TELEPHONE NUMBER. The person completing the form will sign and enter his or her PID.
and phone number (DSN/Commercial). The phone number and PID will be used to clarify entries.

41. **UIC (THIS ACTION).** The Unit Identification Code of the organization that completed the action shown in block 43. If a contractor, enter the CAGE code prefix with a "K."

42. **MAN-HOURS TO REPAIR/OVERHAUL.** The total man-hours, in hours and tenths, it took to repair/overhaul, or rebuild the item (see Time Conversion chart, table 1-12, at the end of chapter 1 or the backside of DA Form 2408).

43. **INSPECTION AND ACTION CODES.** If the item is found serviceable enter "A" in the small block next to (A) SERV. When an unserviceable item is returned to serviceable status enter "D" for (REMFGB), "E" for (REPAIR), "F" for (O/HAUL), or "G" for (REBUILT) in the block that applies. Do not use check marks. Do not enter "F" for Overhaul if the entries in blocks 6 and 9 are RC or CC.

44. **REASON FOR GAIN.** Leave blank.

45. **CONTRACT NUMBER.** Leave blank.

46. **MAINT LEVEL.** Enter the level of the maintenance ("O" for AVUM, "F" for AVIM, "D" for Depot) of the activity performing the action indicated in block 36.

47. **ACTUAL FAILURE CODE.** Block 10 of this form identifies the apparent failure code at time of removal. Upon further disassembly and exploration, the root cause for failure may be different from that observed at time of removal. The overhaul/repair facility will enter the actual failure code in this block. See table 1-2 or 1-3 at the end of chapter 1 for the failure code.

48. **SRA/ESRA.** If the item in block 1 was repaired using a special repair authorization from AMCOM or the item was repaired by an Enhanced Special Repair Activity enter "Y," all others enter "N."

**REMARKS.** Provide brief pertinent remarks for the action checked in block 43.

**NOTE:** After repair/overhaul, rebuild, or inspection line through the failure code in block 10, Copy 2 and 3 and enter "799." After all entries are completed on Copy 2, front and backside, mail to AMCOM. Update block 70 of Copy 3 by entering "A" in the small block next to (A) SERV. Make sure that all other blocks are updated on Copy 3 and ship with the serviceable component/module. When a countermeasure set AN/ALQ-144 is repaired, enter all items replaced during the repair on the reverse of copy 2.
REVERSE SIDE OF COPY 2--PARTS REPLACED DURING REPAIR/OVERHAUL. The reverse side of Copy 2 is used to list repair parts replaced during repair, overhaul, or rebuild of the item in block 1. It will be completed by the maintenance activity including depot level maintenance, organic, or contractor support that completes the maintenance. When repair parts with serial numbers are reported, parts will be listed individually as a quantity of 1. All parts used except common, bulk issued hardware will be listed as follows:

49a. FAIL CODE. The failure code that best describes why the item was removed and replaced (see table 1-2 or 1-3).

49b. QTY. The total quantity for each part.

49c. ACT. The correct Maintenance Action Code, such as "A" for replaced, "B" for adjusted, "C" for repaired (nonserialized) (see table 1-9).

49d. NOMENCLATURE. The name of the part.

49e. PART NUMBER. The manufacturer’s Part Number.

49f. SERIAL NUMBER. The Serial Number for each part removed. If the part does not have a serial number, leave blank.

49g. CUMULATIVE COUNTS/HOURS LAST DEPOT REPAIR

<table>
<thead>
<tr>
<th>FAIL CODE</th>
<th>QTY</th>
<th>ACT</th>
<th>NOMENCLATURE</th>
<th>PART NUMBER</th>
<th>SERIAL NUMBER</th>
<th>CUMULATIVE COUNTS/HOURS LAST DEPOT REPAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LCF-1   LCF-2   TTI   OP HOURS</td>
</tr>
<tr>
<td>020</td>
<td>34</td>
<td>A</td>
<td>Blade Set Stg1</td>
<td>6035T67P02</td>
<td>02P5876</td>
<td>204     1121    61    508</td>
</tr>
<tr>
<td>020</td>
<td>38</td>
<td>A</td>
<td>Blade Set Stg2</td>
<td>6034T93P02</td>
<td>06E4543</td>
<td>802     2317    389   1114</td>
</tr>
<tr>
<td>020</td>
<td>1</td>
<td>A</td>
<td>Stage 1 Bislk</td>
<td>6032T26G08</td>
<td>ACT05778</td>
<td>1044    7307    737   2764</td>
</tr>
<tr>
<td>020</td>
<td>1</td>
<td>A</td>
<td>Stage 2 Bislk</td>
<td>6032T27T07</td>
<td>GLB00182</td>
<td>1044    7307    737   2764</td>
</tr>
<tr>
<td>020</td>
<td>1</td>
<td>A</td>
<td>Stage 3-4 Bislk</td>
<td>6038T08P03</td>
<td>GLHA1949</td>
<td>1044    7307    737   2764</td>
</tr>
<tr>
<td>020</td>
<td>1</td>
<td>A</td>
<td>Stage 5 Bislk</td>
<td>6038T09F03</td>
<td>GLBJ1967</td>
<td>1044    7307    737   2764</td>
</tr>
<tr>
<td>701</td>
<td>1</td>
<td>A</td>
<td>Stage 2 R Plate</td>
<td>9039T31F03</td>
<td>PAME4605</td>
<td>802     2317    389   1114</td>
</tr>
<tr>
<td>024</td>
<td>1</td>
<td>C</td>
<td>Hist Recorder</td>
<td>4046T26G02</td>
<td>ECD03595</td>
<td>272     1597    135   682</td>
</tr>
</tbody>
</table>
REPAIR. For T700 series engines enter the total cumulative counts upon removal of repair parts from the engine or major components/modules. The counts and operating hours can be found on the DA Form 2408-16-1. For H-60 series APUs, enter the number of prior overhauls in the LCF 1 block, starts since overhaul in the LCF 2 block, starts since new in the TTI block, and total operating hours since new for the repair part or subcomponent.

Figure 3-18. Sample of a completed DA Form 2410 for the Normal Evacuation Repair and Installation Cycle, (Installation)

Legend for Figure 3-18:
Preparation Instructions (by block number and title) for completion of a DA Form 2410 for the Normal Evacuation, Repair and Installation Cycle, (Installation).

COPY 3--SECTION I--IDENTIFICATION

NOTE: Blocks 1 through 19 and block 70 should already be filled in. When installing an engine on a multiengine aircraft line out the position number in block 11 and enter the new position number, number 1 for left engine or number 2 for right engine.

COPY 3--SECTION IV--INSTALLATION/LOSS

NOTE: Blocks 50 through 53 will be left blank if the next higher assembly is an aircraft.

50. INSTALLED ON (NOMEN NHA). The name of the next higher assembly on which the reportable item is installed.
51. **NSN (NHA).** The NSN of the item in block 50.

52. **PART NUMBER (NHA).** The Part Number of the item in block 50.

53. **SERIAL NUMBER (NHA).** The Serial Number of the item in block 50.

54. **HOURS (NHA).** The current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. If item is a component, enter the operating hours, to the nearest hour, since new or rebuild.

55. **NHA CUMULATIVE COUNTS/HOURS.** Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 50. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 50, leave blank.

56. **APU START METER.** For H-60 series aircraft enter the reading from the APU start meter at the time of APU installation. If the APU does not have a start meter, leave blank.

57. **APU HOUR METER.** For H-60 series aircraft enter the reading from the APU hour meter at the time of APU installation. If the APU does not have a hour meter, leave blank.

58. **HISTORY RECORDER S/N.** If a T700 series engine is entered in block 1 or block 50, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing.

59. **HISTORY RECORDER READING.** If a T700 series engine is entered in block 1 or block 50, enter the current reading from the engine history recorder.

60. **ACFT MODEL.** The Mission Design Series of the aircraft. Leave blank if block 50 is an engine, APU, or component/module.

61. **ACFT S/N.** The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

62. **MAINT LEVEL.** The maintenance level ("O" for AVUM, "F" for AVIM, or "D" for Depot) performing the action.

63. **DATE INSTALLED.** The Julian date that the reportable item was installed.

64. **UIC (THIS ACTION).** The Unit Identification Code of the organization doing the installation. If a contractor, enter the CAGE code prefixed with a "K."

65. **MAN-HOURS (TO INSTALL).** The man-hours, in hours and tenths, it took to install the item in block 1.

66. **REASON FOR LOSS.** Leave blank.

67. **NEW NSN.** Leave blank.

68. **NEW PN.** Leave blank.

69. **NEW SN.** Leave blank.

70. **INSPECTION AND ACTION CODES.** No action required.

71. **PID AND TELEPHONE NUMBER.** The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID will be used at the national level to clarify entries.

Blocks 72 through 75. Leave blank.

**NOTE:** Mail this copy to AMCOM.
Figure 3-19. Sample of a completed DA Form 2410 for change from serviceable to unserviceable uninstalled items. (Installation)

Legend for Figure 3-19:
Preparation Instructions (by block number and title) for completion of a DA Form 2410 for Changes from Serviceable to Unserviceable Uninstalled Items.

### COPY 3--SECTION I--IDENTIFICATION

**NOTE:** Update blocks 10 and 70 of the DA Form 2410 to show the current status.

### COPY 3--SECTION IV--INSTALLATION/LOSS

**Blocks 50 through 62.** Leave blank.

**63. DATE INSTALLED.** The Julian date that the item was determined to be unserviceable.

**64. UIC (THIS ACTION).** The Unit Identification Code for the activity that has the item listed in block 1. If a contractor enter the CAGE code prefixed with a "K."

**BLOCKS 65 through 69.** Leave blank.

**70. INSPECTION AND ACTION CODES.** If the change in serviceability status resulted from the publication of an MWO, or other directive enter "C" in the small box in front of the (C) MWO DUE Block. If the serviceability status changed because of damage, enter "B" in the small box in front of the (B) UNSERV Block, also obliterates entries in other blocks. If the "B" and "C" codes both apply, or an MWO or other directive includes an NSN, P/N, and/or S/N change, enter only the "C" code in the box in front of the (C) MWO DUE Block, and follow procedures in figures 3-27 and 3-28.
71. PID AND TELEPHONE NUMBER. The person completing the form will enter his or her PID and telephone number (DSN/Commercial).

BLOCKS 72 through 75. Leave blank.

NOTE: Mail Copy 3 to AMCOM. Initiate a new DA Form 2410 using the data on the old copy 3. Do not change the control number of the new form. Copy 1 destroy. Copies 2 and 3 will have blocks 1 thru 15 filled in and will remain with the unserviceable item. Enter any additional information that could be helpful in the repair of the item, or the cause of the damage on Copy 2, REMARKS block.

Figure 3-20A. Sample of a completed DA Form 2410 for an NSN/PN/serial number change for an uninstalled item. (Illustration #1)
**Legend for Figure 3-20B:**
Preparation Instructions (by block number and title) for completion of DA Form 2410 for an NSN/PN/SN Change of an Uninstalled Item.

**NOTE:** Discard Copy 2 of the original or existing DA Form 2410.

**COPY 3--SECTION I--IDENTIFICATION**

Blocks 1 through 19. Already filled in.

**COPY 3--SECTION IV--INSTALLATION/LOSS**

BLOCKS 50 through 62. Leave blank.

---

<table>
<thead>
<tr>
<th>CONTROL NUMBER</th>
<th>NSN</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>937845</td>
<td>1613-01-370-6918</td>
<td>70102-08200-065</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIAL NUMBER</th>
<th>CAGE CODE</th>
<th>NO. OF PREV OHS</th>
<th>TIME SINCE LAST INST (HRS)</th>
<th>TIME SINCE NEW (HRS)</th>
<th>Failure Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A204-09876</td>
<td>RC</td>
<td></td>
<td>499</td>
<td>1499</td>
<td>RC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POS</th>
<th>HSF</th>
<th>METER HRS</th>
<th>WUC</th>
<th>COMPONENT CUMULATIVE COUNT/ HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>05A011</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APU SSN</th>
<th>APU HRS</th>
<th>APU SSO</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>

**SECTION II--REPAIR/OVERHAUL/GAIN**

<table>
<thead>
<tr>
<th>REMOVED FROM</th>
<th>NSN</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>INOMCN NHA</td>
<td>NHA</td>
<td>NHA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIAL NUMBER</th>
<th>HOURS</th>
<th>NHA CUMULATIVE COUNT/HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INHA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APU START METER</th>
<th>APU HOUR METER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HISTORY RECORDER SN</th>
<th>HISTORY RECORDER READING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACT Model</th>
<th>ACFT SN</th>
<th>MAINT LEVEL</th>
<th>DATE REMOVED</th>
<th>UIC (This Action)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3423</td>
<td>861-3818</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE CHECKED</th>
<th>PID AND TELEPHONE NUMBER</th>
<th>UIC (This Action)</th>
<th>MACHNOURS TO REPAIR/OVERHAUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>95136</td>
<td>LA3423 861-3818</td>
<td></td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSPECTION AND ACTION CODES</th>
<th>REASON FOR GAIN</th>
<th>CONTRACT NUMBER</th>
<th>MAINT LEVEL</th>
<th>ACT FAIL CODE</th>
<th>SRA/ESRA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>

63. **DATE INSTALLED.** Enter the Julian date the action is completed.

64. **UIC (THIS ACTION).** The Unit Identification Code for the activity that determined the NSN/PN/SN is to be changed. If a contractor enters the Cage code prefixed with a "K."

65. **MANHOURS TO INSTALL.** Leave blank.

66. **REASON FOR LOSS.** Enter "M."

67. **NEW NSN.** Enter the new NSN that the item will have after modification. If the NSN will not change, leave blank.

68. **NEW PN.** Enter the new part number that the item will have after modification. If the part number will not change, leave blank.
69. NEW SN. Enter the new serial number that the item will have after modification. If the serial number will not change, leave blank.

70. INSPECTION AND ACTION CODES. Enter a "C" in the box in front of the (C) MWO DUE Block. Line out any other entries in block 39.

71. PID AND TELEPHONE NUMBER. The person completing this form will enter his or her PID, and telephone number (DSN/Commercial).

BLOCKS 72 through 75. Leave blank.

NOTE: Line out entry in block 10 and enter "801." When Copy 3 is completed, start a new DA Form 2410 (see figure 3-19, illustration #1). Destroy new copy 1. Do not change the control number of the new form.

COPY 2--SECTION I--IDENTIFICATION

Complete block 1 and blocks 5 through 19 by copying this information from the old copy 3.

2. NSN. The new National Stock Number (block 67 of the old copy 3) if the NSN was changed by an MWO or other directive. If the NSN was not changed, enter the NSN from block 2, of the old copy 3.

3. PART NUMBER. The new Part Number (block 68, of the old copy 3) if the PN was changed by an MWO or other directive. If the PN was not changed, enter the PN from block 3, of the old copy 3.

4. SERIAL NUMBER. The new Serial Number (block 69 of the old copy 3) if the SN was changed by an MWO or other directive. If the SN was not changed, enter the SN from block 4 of the old copy 3.

COPY 2--SECTION III--REPAIR/OVERHAUL/GAIN DATA

Blocks 20 through 34. Leave blank.

39. DATE CHECKED. The Julian date the repair or maintenance action was completed.

40. PID AND TELEPHONE NUMBER. The person completing this form will enter his or her PID and telephone number (DSN/Commercial) in this block.

41. UIC. The Unit Identification Code for the activity that performed the work. If a contractor enter the CAGE code prefixed with a "K."

42. MAN-HOURS TO REPAIR/OVERHAUL. The total man-hours, in hours and tenths, it took to do the work.

43. INSPECTION AND ACTION CODES. Place the proper letter in the small box next to the action code that applies. Do not use check marks. Do not enter "F" for Overhaul if the entries in blocks 6 and 9 are RC or CC.

44. REASON FOR GAIN. After the MWO or other directive is applied, enter "S."

45. CONTRACT NUMBER. Leave blank.

46. MAINT LEVEL. The maintenance level ("O" for AVUM, "F" for AVIM, or "D" for depot) of the unit doing the MWO or other directive.

47. ACTUAL FAILURE CODE. Enter "801."

48. SRA/ESRA. If the item in block 1 was repaired using a special repair authorization from AMCOM or the item was repaired by an Enhanced Special Repair Activity enter "Y," all others enter "N."

NOTE: Update blocks 6 through 19, and REMARKS when needed on Copies 2 and 3. Update block 70 of Copy 3 by entering "A" in the small block next to (A) SERV. Copy 3 remains with the component/module until installation. Attach Copy 1 and 2 to the old Copy 3 and mail to AMCOM.
**Figure 3-21A. Sample of a completed DA Form 2410 for a NSN/PN/serial number change for an installed item. (Illustration #1)**

<table>
<thead>
<tr>
<th>Section I - Identification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Number 925406</td>
<td></td>
</tr>
<tr>
<td>Hub Assy 1615-01-237-0512</td>
<td></td>
</tr>
<tr>
<td>Part Number 204-012-101-139</td>
<td></td>
</tr>
<tr>
<td>Serial Number ABG-48723</td>
<td></td>
</tr>
<tr>
<td>Cage Code 97499</td>
<td></td>
</tr>
<tr>
<td>No. Of Prev O/Hs 1</td>
<td></td>
</tr>
<tr>
<td>Time Since Last Inst (HRS) 800</td>
<td></td>
</tr>
<tr>
<td>Time Since New (HRS) 2000</td>
<td></td>
</tr>
<tr>
<td>Time Since Overhaul (HRS)   800</td>
<td></td>
</tr>
<tr>
<td>Failure Code 801</td>
<td></td>
</tr>
<tr>
<td>Component Cumulative Count/Hours</td>
<td></td>
</tr>
<tr>
<td>APU SSN 05A01</td>
<td></td>
</tr>
<tr>
<td>APU Hrs 15</td>
<td></td>
</tr>
<tr>
<td>APU SSO 16</td>
<td></td>
</tr>
<tr>
<td>Version 17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section II - Removal Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed From (NOMEN NHA)</td>
<td></td>
</tr>
<tr>
<td>NSN (NHA)</td>
<td></td>
</tr>
<tr>
<td>Part Number (NHA)</td>
<td></td>
</tr>
<tr>
<td>Serial Number (NHA)</td>
<td></td>
</tr>
<tr>
<td>Hours (NHA)</td>
<td></td>
</tr>
<tr>
<td>NHA Cumulative Count/Hours</td>
<td></td>
</tr>
<tr>
<td>APU Start Meter</td>
<td></td>
</tr>
<tr>
<td>APU Hour Meter</td>
<td></td>
</tr>
<tr>
<td>History Recorder SN</td>
<td></td>
</tr>
<tr>
<td>History Recorder Reading</td>
<td></td>
</tr>
<tr>
<td>Aircraft Model UH-1H</td>
<td></td>
</tr>
<tr>
<td>Aircraft S/N 7221565</td>
<td></td>
</tr>
<tr>
<td>Maint Level F</td>
<td></td>
</tr>
<tr>
<td>Date Removed 96076</td>
<td></td>
</tr>
<tr>
<td>UIC (This Action) WVAH99</td>
<td></td>
</tr>
<tr>
<td>Manhours (To Remove)</td>
<td></td>
</tr>
<tr>
<td>P.O. and Telephone Number</td>
<td></td>
</tr>
<tr>
<td>Malfunction Code</td>
<td></td>
</tr>
<tr>
<td>When Discovered</td>
<td></td>
</tr>
</tbody>
</table>

**Remarks**

DA FORM 2410, OCT 97

DA FORM 2410, JAN 92, IS OBSOLETE

REMOVAL REPORT COPY 1

---

132

DA PAM 738–751 • 15 March 1999
Figure 3-21B. Sample of a completed DA Form 2410 for a NSN/PN/serial number change for an installed item. (Illustration #2)
Figure 3-21C. Sample of a completed DA Form 2410 for an NSN/PN/serial number change for an installed item. (Illustration #3)
Legend for Figure 3-21D:
Preparation Instructions (by block number and title) for completion of a DA Form 2410 for an NSN/PN/SN Change for an Installed Item.

COPY 1--SECTION II--REMOVAL DATA
This is an administrative removal and installation procedure for AMCOM tracking purposes.

COPY 1--SECTION I--IDENTIFICATION
1. NOMENCLATURE. The name of the item.
2. NSN. The National Stock Number of the item.
3. PART NUMBER. The Part Number of the item.
4. SERIAL NUMBER. The Serial Number of the item.
5. CAGE CODE. The Contractor and Government Entity (CAGE) Code for the item (found on the data plate).
6. NO. OF PREV O/Hs. Enter the number of times that the item has been overhauled. Get this information from block 6d of the DA Form 2408-16 or block 6a of DA Form 2408-16-1 for H-60 series aircraft APUs. If the item has never been overhauled, enter "0." For Retirement Life Components and Condition Components enter "RC" or "CC."
7. TIME SINCE LAST INSTL (HRS). Enter the number of hours, to the nearest hour, the item has been operated since it was last installed. Get this information from DA Form 2408-16 by subtracting block 6e from 6f. For T700 series engines get this information from the DA Form 2408-16-1 by subtracting the total cumulative...
hours at installation from the total cumulative hours at removal. For H-60 series APUs get this information from the DA Form 2408-16-1. For H-60 series APUs without an installed hour meter enter "0."

8. TIME SINCE NEW (HRS). Enter the total number of hours, to the nearest hour, that the item has been operated since it was new or rebuilt. Get this information from block 6i of the DA Form 2408-16. For T700 series engines get this information from the DA Form 2408-16-1. For H-60 series APUs with an installed hour meter, enter the total hours since new. For H-60 series APUs without an installed hour meter enter "0."

9. TIME SINCE OVERHAUL (HRS). If the item has been overhauled before, enter the number of hours, to the nearest hour, that the item has operated since the last overhaul. Get this information from the DA Form 2408-16; subtract block 6e from 6f, then add block 6g. When the item has never been overhauled, enter "0." If the item is a RC or CC item, enter "RC" or "CC." For H-60 series APUs, enter "0."

10. FAILURE CODE. Enter "801."

11. POS. Enter the position that the engine was installed in, number 1 for left engine or number 2 for right engine.

12. HSF. For T703 engines, enter the total number of hot section factors.

13. METER HRS. Enter the hourmeter reading for items designated by TB 1-1500-341-01 to be tracked using meter hours.

14. WUC. Enter the work unit code that applies.

15. COMPONENT CUMULATIVE COUNT/HOURS. For T700 series engines, components/modules, and subcomponents enter the total cumulative counts/hours for the item in block 1. This entry is also required for history recorders. Enter only operating hours, block 15d., for components/modules, entered on the reverse side of the engine DA Form 2408-16-1, that do not require a separate DA Form 2408-16-1. If the item is new enter "0."

15a. LCF 1. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 1 counts.

15b. LCF 2. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 2 counts.

15c. TTI. For T700 series engines, components/modules, or subcomponents enter the total cumulative TTI counts.

15d. OP HOURS. For T700 series engines, components/modules, or subcomponents enter the total cumulative operating hours.

16. APU SSN. For H-60 series aircraft APUs enter the total starts since new.

17. APU HRS. For H-60 series aircraft APUs with an installed hour meter, enter the total hours since new for the APU.

18. APU SSO. For H-60 series aircraft APUs, enter the number of starts since the last overhaul.

19. VERSION. Enter the software version for the item entered in block 1 when required by TB 1-1500-341-01.

COPY 1--SECTION II--REMOVAL DATA

NOTE: Blocks 20 through 23 will be left blank if the next higher assembly is an aircraft.

20. REMOVED FROM (NOMEN NHA). The name of the next higher assembly, from which the item in block 1 was removed. This information is on the DA Form 2408-16, block 1, or DA Form 2408-16-1, block 3.

21. NSN (NHA). The National Stock Number of the item in block 20.

22. PART NUMBER (NHA). The Part Number of the item in block 20.

23. SERIAL NUMBER (NHA). The Serial Number of the item in block 20.

24. HOURS (NHA). The current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. When the item, in block 20, is a component, enter the components operating hours since new.

25. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 20. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 20, leave blank.

26. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU removal. If the APU does not have a start meter, leave blank.

27. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of APU removal. If the APU does not have a hour meter, leave blank.

28. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 20, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing.

29. HISTORY RECORDER READING. If a T700 series engine is entered in block 1 or block 20, enter the current reading from the engine history recorder.

30. ACFT MODEL. The aircraft Mission Design Series if the next higher assembly is an aircraft, otherwise leave blank.
31. **ACFT S/N.** The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

32. **MAINT LEVEL.** The Maintenance Level ("O" for AVUM, "F" for AVIM, "D" for Depot) of the unit/activity doing the removal.

33. **DATE REMOVED.** The Julian date that the removal action was completed.

34. **UIC.** The Unit Identification Code for the organization taking this action. If a contractor, enter the CAGE code prefixed with a "K."

35. **MAN-HOURS.** Leave blank.

36. **PID AND TELEPHONE NUMBER.** The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID will be used at the national level to clarify entries.

Blocks 37 and 38. Leave blank.

NOTE: Destroy Copy 2.

**COPY 3--SECTION IV--INSTALLATION**

Blocks 50 through 62. Leave blank.

63. **DATE INSTALLED.** The Julian date the actions are completed.

64. **UIC.** The Unit Identification Code for the activity that applies the MWO or other directive to change the NSN/PN/SN. If a contractor, enter the proper CAGE code prefixed with a "K."

65. **MAN-HOURS.** Leave blank.

66. **REASON FOR LOSS.** Enter "M."

67. **NEW NSN.** Enter the new NSN that the item will have after modification. If the NSN will not change, leave blank.

68. **NEW PN.** Enter the new part number that the item will have after modification. If the part number will not change, leave blank.

69. **NEW SN.** Enter the new serial number that the item will have after modification. If the serial number will not change, leave blank.

70. **INSPECTION AND ACTION CODES.** Enter a "C" in the box in front of the (C) MWO DUE Block. Line out any other entries in block 39.

71. **PID AND TELEPHONE NUMBER.** The person completing this form will enter his or her PID, and telephone number (DSN/Commercial).

**COPY 2--SECTION I--IDENTIFICATION**

Complete block 1 and blocks 5 through 19 by copying this information from the old copy 3.

2. **NSN.** The new National Stock Number (block 67 of the old copy 3) if the NSN will be changed by an MWO or other directive. If the NSN will not change, enter the NSN from block 2, of the old copy 3.

3. **PART NUMBER.** The new Part Number (block 68, of the old copy 3) if the PN will be changed by an MWO or other directive. If the PN will not change, enter the PN from block 3, of the old copy 3.

4. **SERIAL NUMBER.** The new Serial Number (block 69 of the old copy 3) if the SN will be changed by an MWO or other directive. If the SN will not change, enter the SN from block 4 of the old copy 3.

**COPY 2--SECTION III--REPAIR/OVERHAUL/GAIN**

Blocks 20 through 34. Leave blank.

39. **DATE CHECKED.** Enter the Julian date that the maintenance action was completed.

40. **PID AND TELEPHONE NUMBER.** The person completing this form will enter his or her PID and telephone number (DSN/Commercial).

41. **UIC.** Enter the Unit Identification Code for the activity that performed the work. If a contractor enter the CAGE code prefixed with a "K."

42. **MAN-HOURS TO REPAIR/OVERHAUL.** Enter the total man-hours, by hours and tenths, it took to do the work.

43. **INSPECTION AND ACTION CODE.** Enter the appropriate letter ("A" for Serviceable, "E" for Repair, "F" for Overhaul) in the small box in front of the corrective action. Do not use check marks. Do not enter "F" for Overhaul if the entries in blocks 6 and 9 are RC or CC.

44. **REASON FOR GAIN.** After the MWO or other directive is applied, enter code "S."

45. **CONTRACT NUMBER.** Leave blank.

46. **MAINT LEVEL.** Enter the maintenance level ("O" for AVUM, "F" for AVIM, and "D" for depot) of the unit/activity doing the work.

47. **ACTUAL FAILURE CODE.** Enter "801."

48. **SRA/ESRA.** If the item in block 1 was repaired using a special repair authorization from AMCOM or
the item was repaired by an Enhanced Special Repair Activity, enter "Y," all others enter "N."

NOTE: Update blocks 6 through 19, and REMARKS when needed on Copies 2 and 3. Update block 70 of Copy 3 by entering "A" in the small block next to (A) SERV. Copy 3 remains with the component/module until installation. Attach Copy 1 and 2 to the old Copy 3 and mail to AMCOM.

COPY 3--SECTION I--IDENTIFICATION
Blocks 1 through 19. Already filled in.

NOTE: If the item in block 1 is an engine and is to be installed on a multi-engine aircraft update block 11 to show the correct position upon installation.

COPY 3--SECTION IV--INSTALLATION/LOSS
NOTE: Blocks 50 through 53 will be left blank if the next higher assembly is an aircraft.

50. INSTALLED ON (NOMEN NHA). Enter the name of the next higher assembly on which the item in block 1 is installed.

51. NSN (NHA). Enter the National Stock Number of the item in block 50.

52. PART NUMBER (NHA). Enter the Part Number of the item in block 50.

53. SERIAL NUMBER (NHA). Enter the Serial Number of the item in block 50.

54. HOURS (NHA). Enter the current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. If item is a component, enter the component operating hours, to the nearest hour, since new or rebuild.

55. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 50. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 50, leave blank.

56. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU installation. If the APU does not have a start meter, leave blank.

57. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of

APU installation. If the APU does not have an hour meter, leave blank.

58. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 50, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing.

59. HISTORY RECORDER READING. If a T700 series engine is entered in block 1 or block 50, enter the current reading from the engine history recorder.

60. ACFT MODEL. The Mission Design Series of the aircraft. Leave blank if block 50 is an engine, APU, or component/module.

61. ACFT S/N. The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

62. MAINT LEVEL. The maintenance level ("O" for AVUM, "F" for AVIM, or "D" for Depot) performing the action.

63. DATE INSTALLED. The Julian date that the reportable item was installed.

64. UIC. The Unit Identification Code of the organization doing the installation. If a contractor, enter the CAGE code prefixed with a "K."

65. MAN-HOURS. Leave blank.

66. REASON FOR LOSS. Leave blank.

67. NEW NSN. Leave blank.

68. NEW PN. Leave blank.

69. NEW SN. Leave blank.

70. INSPECTION AND ACTION CODES. No action required.

71. PID AND TELEPHONE NUMBER. The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID provided can be used at the national level to clarify some entries.

Blocks 72 through 75. Leave blank.

NOTE: Attach Copy 3 to new Copy 2 and the old Copies 1 and 3 and mail to AMCOM.
Legend for Figure 3-22:
Preparation Instructions (by block number and title) for Completion of a DA Form 2410 when a Serviceable Reportable Item is Removed for Controlled Exchange (Identification and Removal Data)

COPY 1—SECTION I—IDENTIFICATION
1. NOMENCLATURE. Enter the item name.
2. NSN. Enter the National Stock Number of the item.
3. PART NUMBER. Enter the Part Number of the item.
4. SERIAL NUMBER. Enter the Serial Number of the item.

5. CAGE CODE. Enter the Contractor and Government Entity Code for the item (found on the data plate).

6. NO. OF PREV O/Hs. Enter the number of times that the item has been overhauled. Get this information from block 6d of the DA Form 2408-16 or block 6a of DA Form 2408-16-1 for H-60 series aircraft APUs. If the item has never been overhauled, enter "0." For Retirement Life Components and Condition Components enter "RC" or "CC" in this block.

7. TIME SINCE LAST INSTL (HRS). Enter the number of hours, to the nearest hour, the item has been operated since it was last installed. Get this information from DA Form 2408-16 by subtracting block 6e from 6f. For T700 series engines get this information from the DA Form 2408-16-1 by subtracting the total cumulative hours at installation from the total cumulative hours at removal. For H-60 series APUs get this information.

Figure 3-22. Sample of a completed DA Form 2410 when a serviceable reportable item is removed for controlled exchange. (Identification and Removal Data)
from the DA Form 2408-16-1. For H-60 series APUs without an installed hour meter enter "0."

8. TIME SINCE NEW (HRS). Enter the total number of hours, to the nearest hour, that the item has been operated since it was new or rebuilt. Get this information from block 6i of the DA Form 2408-16. For T700 series engines get this information from the DA Form 2408-16-1. For H-60 series APUs with an installed hour meter, enter the total hours since new. For H-60 series APUs without an installed hour meter enter "0."

9. TIME SINCE OVERHAUL (HRS). If the item has been overhauled before, enter the number of hours, to the nearest hour, that the item has operated since the last overhaul. Get this information from the DA Form 2408-16; subtract block 6e from 6f, then add block 6g. When the item has never been overhauled, enter "0." If the item is a RC or CC item, enter "RC" or "CC." For H-60 series APUs, enter "0."

10. FAILURE CODE. Enter "674."

11. POS. Enter the position that the engine was installed in, number 1 for left engine or number 2 for right engine.

12. HSF. For T703 engines, enter the total number of hot section factors.

13. METER HRS. Enter the hourmeter reading for items designated by TB 1-1500-341-01 to be tracked using meter hours.

14. WUC. Enter the work unit code that applies.

15. COMPONENT CUMULATIVE COUNT/HOURS. For T700 series engines, components/modules, and sub components enter the total cumulative counts/hours for the item in block 1. This entry is also required for history recorders. Enter only operating hours for components/modules, entered on the reverse side of the engine DA Form 2408-16-1, that do not require a separate DA Form 2408-16-1. If the item is new enter "0."

15a. LCF 1. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 1 counts.

15b. LCF 2. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 2 counts.

15c. TTI. For T700 series engines, components/modules, or subcomponents enter the total cumulative TTI counts.

15d. OP HOURS. For T700 series engines, components/modules, or subcomponents enter the total cumulative operating hours.

16. APU SSN. For H-60 series aircraft APUs enter the total starts since new.

17. APU HRS. For H-60 series aircraft APUs with an installed hour meter, enter the total hours since new for the APU.

18. APU SSO. For H-60 series aircraft APUs, enter the number of starts since the last overhaul.

19. VERSION. Enter the software version for the item entered in block 1 when required by TB 1-1500-341-01.

COPY 1--SECTION II--REMOVAL DATA

This section is completed by the organization that is doing the removal of the reportable item.

NOTE: Blocks 20 through 23 will be left blank if the next higher assembly is an aircraft.

20. REMOVED FROM (NOMEN NHA). The name of the next higher assembly, from which the item in block 1 was removed. This information is on the DA Form 2408-16, block 1, or DA Form 2408-16-1, block 3.

21. NSN (NHA). The National Stock Number of the item in block 20.

22. PART NUMBER (NHA). The Part Number of the item in block 20.

23. SERIAL NUMBER (NHA). The Serial Number of the item in block 20.

24. HOURS (NHA). The current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. When the item, in block 20, is a component, enter the components operating hours since new.

25. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 20. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 20, leave blank.

26. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU removal. If the APU does not have a start meter, leave blank.

27. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of APU removal. If the APU does not have a hour meter, leave blank.

28. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 20, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing.

29. HISTORY RECORDER READING. If a T700 series engine is entered in block 1 or block 20, enter the current reading from the engine history recorder.

30. ACFT MODEL. The aircraft Mission Design Series if the next higher assembly is an aircraft, otherwise leave blank.
31. ACFT S/N. The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

32. MAINT LEVEL. The Maintenance Level ("O" for AVUM, "F" for AVIM, "D" for Depot) of the unit/activity doing the removal.

33. DATE REMOVED. The Julian date that the removal action was completed.

34. UIC. The Unit Identification Code for the organization taking this action. If a contractor, enter the CAGE code prefixed with a "K."

35. MAN-HOURS. The man-hours it took to remove the item, in hours and tenths (see Time Conversion Codes, table 1-12, at the end of chapter 1 or the backside of DA Form 2408).

36. PID AND TELEPHONE NUMBER. The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID will be used at the national level to clarify entries.

Blocks 37 and 38. Leave blank.

Figure 3-23. Sample of a completed DA Form 2410 when a serviceable reportable item is removed for controlled exchange. (Installation Data)

Legend for Figure 3-23:
Preparation Instructions (by block number and title) for Completion of a DA Form 2410 when a Serviceable Reportable Item is Installed for Controlled Exchange. (Installation Data)
NOTE: Destroy Copy 2.

COPY 3--SECTION I--IDENTIFICATION

Blocks 1 through 19. Already filled in.

NOTE: Block 7 must be updated.

COPY 3--SECTION IV--INSTALLATION/LOSS

NOTE: Blocks 50 through 53 will be left blank if the next higher assembly is an aircraft.

50. INSTALLED ON (NOMEN NHA). Enter the name of the next higher assembly on which the item in block 1 is installed.

51. NSN (NHA). Enter the National Stock Number of the item in block 50.

52. PART NUMBER (NHA). Enter the Part Number of the item in block 50.

53. SERIAL NUMBER (NHA). Enter the Serial Number of the item in block 50.

54. HOURS (NHA). Enter the current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. If item is a component, enter the component operating hours, to the nearest hour, since new or rebuild.

55. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 50. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 50, leave blank.

56. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU installation. If the APU does not have a start meter, leave blank.

57. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of APU installation. If the APU does not have a hour meter, leave blank.

58. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 50, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing.

59. HISTORY RECORDER READING. If a T700 series engine is entered in block 1 or block 50, enter the current reading from the engine history recorder.

60. ACFT MODEL. The Mission Design Series of the aircraft. Leave blank if block 50 is an engine, APU, or component/module.

61. ACFT S/N. The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

62. MAINT LEVEL. The maintenance level ("O" for AVUM, "F" for AVIM, or "D" for Depot) performing the action.

63. DATE INSTALLED. The Julian date that the reportable item was installed.

64. UIC. The Unit Identification Code of the organization doing the installation. If a contractor, enter the CAGE code prefixed with a "K."

65. MANHOURS. The manhours, in hours and tenths, it took to install the item in block 1.

66 through 69. Leave blank.

70. INSPECTION AND ACTION CODES. Enter an "A" in the small box in front of the (A) SERV Block.

71. PID AND TELEPHONE NUMBER. The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID will be used at the national level to clarify entries.

Blocks 72 through 75. Leave blank.

NOTE: Mail Copies 1 and 3 to AMCOM.
Figure 3-24A. Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code of "D" or "J" is used. (Illustration #1)
Figure 3-24B. Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code of "D" or "J" is used. (Illustration #2)

Legend for Figure 3-24B:
Preparation Instructions (by block number and title) for Completion of a DA Form 2410 for Loss to the Army Inventory when a Loss Code of "D" or "J" is used.

Normally Copies 2 and 3 will be with the uninstalled item. Discard copy 2 and complete only Copy 3.

For installed items initiate DA Form 2410, discarding Copy 1 and 2 and complete only Copy 3.

**COPY 3—SECTION I—IDENTIFICATION**

**NOTE:** For uninstalled items blocks 1 through 19 will already be filled in.

1. **NOMENCLATURE.** Enter the item name.
2. **NSN.** Enter the National Stock Number of the item.
3. **PART NUMBER.** Enter the Part Number of the item.
4. **SERIAL NUMBER.** Enter the Serial Number of the item. Do not enter more than one Serial Number.
5. **CAGE CODE.** Enter the Contractor and Government Entity Code for the item (found on the item data plate).
6. **NO. OF PREV O/Hs.** Enter the number of times that the item has been overhauled. Get this information from block 6d of the DA Form 2408-16 or block 6a of DA Form 2408-16-1 for H-60 series aircraft APUs. If the item has never been overhauled, enter "0." For Retirement Life Components and Condition Components enter "RC" or "CC" in this block.
7. TIME SINCE LAST INSTL (HRS). Enter the number of hours, to the nearest hour, the item has been operated since it was last installed. Get this information from DA Form 2408-16 by subtracting block 6e from 6f. For T700 series engines get this information from the DA Form 2408-16-1 by subtracting the total cumulative hours at installation from the total cumulative hours at removal. For H-60 series APUs get this information from the DA Form 2408-16-1. For H-60 series APUs without an installed hour meter enter "0."

8. TIME SINCE NEW (HRS). Enter the total number of hours, to the nearest hour, that the item has been operated since it was new or rebuilt. Get this information from block 6i of the DA Form 2408-16. For T700 series engines get this information from the DA Form 2408-16-1. For H-60 series APUs with an installed hour meter, enter the total hours since new. For H-60 series APUs without an installed hour meter enter "0."

9. TIME SINCE OVERHAUL (HRS). If the item has been overhauled before, enter the number of hours, to the nearest hour, that the item has operated since the last overhaul. Get this information from block 6i of the DA Form 2408-16; subtract block 6e from 6f, then add block 6g. When the item has never been overhauled, enter "0." If the item is a RC or CC item, enter "RC" or "CC." For H-60 series APUs, enter "0."

10. FAILURE CODE. Enter the appropriate Failure Code (Tables 1-2 and 1-3).

11. POS. Enter the position that the engine was installed in, number 1 for left engine or number 2 for right engine.

12. HSF. For T703 engines, enter the total number of hot section factors.

13. METER HRS. Enter the hourmeter reading for items designated by TB 1-1500-341-01 to be tracked using meter hours.

14. WUC. Enter the work unit code that applies.

15. COMPONENT CUMULATIVE COUNT/HOURS. For T700 series engines, components/modules, and sub-components enter the total cumulative counts/hours for the item in block 1. This entry is also required for history recorders. Enter only operating hours for components/modules, entered on the reverse side of the engine DA Form 2408-16-1, that do not require a separate DA Form 2408-16-1. If the item is new enter "0."

15a. LCF 1. For T700 series engines, components/modules, or sub components enter the total cumulative LCF 1 counts.

15b. LCF 2. For T700 series engines, components/modules, or sub components enter the total cumulative LCF 2 counts.

15c. TTI. For T700 series engines, components/modules, or sub components enter the total cumulative TTI counts.

15d. OP HOURS. For T700 series engines, components/modules, or sub components enter the total cumulative operating hours.

16. APU SSN. For H-60 series aircraft APUs enter the total starts since new.

17. APU HRS. For H-60 series aircraft APUs with an installed hour meter, enter the total hours since new for the APU.

18. APU SSO. For H-60 series aircraft APUs, enter the number of starts since the last overhaul.

19. VERSION. Enter the software version for the item entered in block 1 when required by TB 1-1500-341-01.

COPY 3--SECTION IV--INSTALLATION/LOSS

NOTE: For items that are not installed on their next higher assembly, leave blocks 50 through 62 blank. If the next higher assembly is an aircraft, leave blocks 50 through 54 blank.

50. INSTALLED ON (NOMEN NHA). For uninstalled items leave blank. For installed items enter the name of the next higher assembly that the item, in block 1, is installed on.

51. NSN (NHA). Enter the National Stock Number of the item in block 50.

52. PART NUMBER (NHA). Enter the Part Number of the item in block 50.

53. SERIAL NUMBER (NHA). Enter the Serial Number of the item in block 50.

54. HOURS (NHA). Enter the current aircraft hours, to the nearest hour, if the next higher assembly is an aircraft. If item is a component, enter the component operating hours to the nearest hour since new or rebuild.

55. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 50. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 50, leave blank.

56. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU loss to the inventory. If the APU does not have a start meter, leave blank.

57. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of APU loss to the inventory. If the APU does not have a hour meter, leave blank.

58. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 50, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder.
serial number from a slave engine used for component or module testing.

59. HISTORY RECORDER READING. If a T700 series engine is entered in block 1 or block 50, enter the current reading from the engine history recorder.

60. ACFT MODEL. The Mission Design Series of the aircraft. Leave blank if block 50 is an engine, APU, or component/module.

61. ACFT S/N. The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

62. MAINT LEVEL. The maintenance level ("O" for AVUM, "F" for AVIM, or "D" for Depot) performing the action.

63. DATE INSTALLED. The Julian date that the form was completed.

64. UIC. The Unit Identification Code of the organization completing the form. If a contractor, enter the CAGE code prefixed with a "K."

65. MAN-HOURS. Leave blank.

66. REASON FOR LOSS. Enter the Loss Code (D or J) that best describes the reason for the loss.

67. NEW NSN. Leave blank.

68. NEW PN. Leave blank.

69. NEW SN. Leave blank.

70. INSPECTION AND ACTION CODES. Enter the appropriate letter ("A" for Serviceable or "B" for Unserviceable) in the small block next to the corrective action.

REMARKS: Enter the mutilation statement, verbatim, required by TM 1-1500-328-23 then sign and date the statement.

NOTE: Make a photocopy of this form and mail to AMCOM. If the item has its own separate DA Form 2408-16 or 2408-16-1, make a photocopy of the form and send it to AMCOM with the photocopy DA Form 2410. The original DA Form 2410 Copy 3 and DA Form 2408-16 or 2408-16-1 will remain with the item when shipped to DRMO.
**COMPONENT REMOVAL AND REPAIR/OVERHAUL RECORD**

For use of this form, see DA PAM 738-751; the proponent agency is DCSLOG.

<table>
<thead>
<tr>
<th>CONTROL NUMBER</th>
<th>1. NOMENCLATURE</th>
<th>2. NSN</th>
<th>3. PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>875432</td>
<td>Maid Bearing</td>
<td>3110-01-094-4412</td>
<td>212-040-136-1</td>
</tr>
</tbody>
</table>

| 4. SERIAL NUMBER | 5. CAGE CODE | 6. NO. OF PREV.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BY7654</td>
<td>97499</td>
<td>Q/Hs RC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. TIME SINCE</th>
<th>8. TIME SINCE</th>
<th>9. TIME SINCE</th>
<th>10. FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAST INST. HRS</td>
<td>NEW HRS</td>
<td>OVERHAUL HRS</td>
<td>CODE</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>RC</td>
<td>799</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. POS</th>
<th>12. HSF</th>
<th>13. METER HRS</th>
<th>14. WUC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>O6H03A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. COMPONENT CUMULATIVE COUNT/HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. LCF 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. APU SSN</th>
<th>17. APU HRS</th>
<th>18. APU SSD</th>
<th>19. VERSION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>50. INSTALLED ON (NOMEN NHA)</th>
<th>51. NSN (NHA)</th>
<th>52. PART NUMBER (NHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast Assy</td>
<td>1615-00-073-8203</td>
<td>204-040-365-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>53. SERIAL NUMBER (NHA)</th>
<th>54. HOURS (NHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12-10236</td>
<td>1498</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>55. NHA CUMULATIVE COUNT/HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. LCF 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>56. APU START METER</th>
<th>57. APU HOUR METER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>58. HISTORY RECORDER SN</th>
<th>59. HISTORY RECORDER READING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. LCF 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60. ACFT MODEL</th>
<th>61. ACFT SN</th>
<th>62. MAINT LEVEL</th>
<th>63. DATE INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>96053</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>64. UIC (This Action)</th>
<th>65. MANHOURS</th>
<th>66. REASON FOR LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1008A</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>67. NEW NSN</th>
<th>68. NEW PN</th>
<th>69. NEW SN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70. INSPECTION AND ACTION CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (A) SERV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B) UNSERV</th>
<th>(D) REMFG</th>
<th>(F) O/HAUL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>71. PID AND TELEPHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS5556 DSN 861-2711</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>72. SHIPPED TO</th>
<th>73. LOCATION</th>
<th>74. UIC</th>
<th>75. DATE SHIPPED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbian Air Force</td>
<td>Bogota Columbia</td>
<td></td>
<td>96053</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>

Figure 3-25A. Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code other than "D", "J", or "M" is used. (Illustration #1).
Figure 3-25B. Sample of a completed DA Form 2410 for loss to the Army inventory when a loss code other than "D", "J", or "M" is used.

Legend for Figure 3-25B:
Preparation Instructions (by block number and title) for completion of DA Form 2410 for Loss to the Army Inventory of a component/module or part for a Loss Code other than "D", "J", or "M".

NOTE: For Uninstalled items discard Copy 2 and complete only Copy 3. For Installed items discard Copy 1 and 2 and complete only Copy 3.

**COPY 3—SECTION I—IDENTIFICATION**

NOTE: For uninstalled items blocks 1 through 19 will already be filled in.

1. **NOMENCLATURE.** Enter the item name.
2. **NSN.** Enter the National Stock Number.
3. **PART NUMBER.** Enter the Part Number.
4. **SERIAL NUMBER.** Enter the Serial Number. Do not enter more than one Serial Number.
5. **CAGE CODE.** Enter the Contractor and Government Entity Code for the item (found on the item data plate).
6. **NO. OF PREV O/Hs.** Enter the number of times that the item has been overhauled. Get this information from block 6d of the DA Form 2408-16 or block 6a of DA Form 2408-16-1 for H-60 series aircraft APUs. If the item has never been overhauled, enter "0." For Retirement Life Components and Condition Components enter "RC" or "CC" in this block.
7. **TIME SINCE LAST INSTL (HRS).** Enter the number
of hours, to the nearest hour, the item has been operated since it was last installed. Get this information from DA Form 2408-16 by subtracting block 6e from 6f. For T700 series engines get this information from the DA Form 2408-16-1 by subtracting the total cumulative hours at installation from the total cumulative hours at removal. For H-60 series APUs get this information from the DA Form 2408-16-1. For H-60 series APUs without an installed hour meter enter "0."

8. TIME SINCE NEW (HRS). Enter the total number of hours, to the nearest hour, that the item has been operated since it was new or rebuilt. Get this information from block 6i of the DA Form 2408-16. For T700 series engines get this information from the DA Form 2408-16-1. For H-60 series APUs with an installed hour meter, enter the total hours since new. For H-60 series APUs without an installed hour meter enter "0."

9. TIME SINCE OVERHAUL (HRS). If the item has been overhauled before, enter the number of hours, to the nearest hour, that the item has operated since the last overhaul. Get this information from the DA Form 2408-16; subtract block 6e from 6f, then add block 6g. When the item has never been overhauled, enter "0." If the item is a RC or CC item, enter "RC" or "CC." For H-60 series APUs, enter "0."

10. FAILURE CODE. Enter the appropriate Failure Code (tables 1-2 and 1-3).

11. POS. Enter the position that the engine was installed in, number 1 for left engine or number 2 for right engine.

12. HSF. For T703 engines, enter the total number of hot section factors.

13. METER HRS. Enter the hourmeter reading for items designated by TB 1-1500-341-01 to be tracked using meter hours.

14. WUC. Enter the work unit code that applies.

15. COMPONENT CUMULATIVE COUNT/HOURS. For T700 series engines, components/modules, and sub-components enter the total cumulative counts/hours for the item in block 1. This entry is also required for history recorders. Enter only operating hours for components/modules, entered on the reverse side of the engine DA Form 2408-16-1, that do not require a separate DA Form 2408-16-1. If the item is new enter "0."

15a. LCF 1. For T700 series engines, components/modules, or sub components enter the total cumulative LCF 1 counts.

15b. LCF 2. For T700 series engines, components/modules, or subcomponents enter the total cumulative LCF 2 counts.

15c. TTI. For T700 series engines, components/modules, or subcomponents enter the total cumulative TTI counts.

15d. OP HOURS. For T700 series engines, components/modules, or subcomponents enter the total cumulative operating hours.

16. APU SSN. For H-60 series aircraft APUs enter the total starts since new.

17. APU HRS. For H-60 series aircraft APUs with an installed hour meter, enter the total hours since new for the APU.

18. APU SSO. For H-60 series aircraft APUs, enter the number of starts since the last overhaul.

19. VERSION. Enter the software version for the item entered in block 1 when required by TB 1-1500-341-01.

COPY 3--SECTION IV--INSTALLATION/LOSS

NOTE: For items that are not installed on their next higher assembly, leave blocks 50 through 62 blank. If the next higher assembly is an aircraft, leave blocks 50 through 54 blank.

50. INSTALLED ON (NOMEN NHA). For uninstalled items leave blank. For installed items enter the name of the next higher assembly that the item, in block 1, is installed.

51. NSN (NHA). Enter the National Stock Number of the item in block 50.

52. PART NUMBER (NHA). Enter the Part Number of the item in block 50.

53. SERIAL NUMBER (NHA). Enter the Serial Number of the item in block 50.

54. HOURS (NHA). Enter the current aircraft hours, to the nearest hour, that the next higher assembly is an aircraft. If it is a component, enter the component operating hours, to the nearest hour, since new or rebuild.

55. NHA CUMULATIVE COUNTS/HOURS. Enter the total cumulative counts and hours since new for the T700 series engine, component or module entered in block 50. Obtain the total cumulative counts from the DA Form 2408-16-1 for the item. If a T700 series engine, component or module is not entered in block 50, leave blank.

56. APU START METER. For H-60 series aircraft enter the reading from the APU start meter at the time of APU loss to the inventory. If the APU does not have a start meter, leave blank.

57. APU HOUR METER. For H-60 series aircraft enter the reading from the APU hour meter at the time of APU loss to the inventory. If the APU does not have a hour meter, leave blank.

58. HISTORY RECORDER S/N. If a T700 series engine is entered in block 1 or block 50, enter the engine history recorder serial number. Leave blank if a history recorder is not used. Do not enter a history recorder serial number from a slave engine used for component or module testing.

59. HISTORY RECORDER READING. If a T700 series
engine is entered in block 1 or block 50, enter the current reading from the engine history recorder.

60. **ACFT MODEL.** The Mission Design Series of the aircraft. Leave blank if block 50 is an engine, APU, or component/module.

61. **ACFT S/N.** The aircraft Serial Number if the next higher assembly is an aircraft, otherwise leave blank.

62. **MAINT LEVEL.** The maintenance level ("O" for AVUM, "F" for AVIM, or "D" for Depot) performing the action.

63. **DATE INSTALLED.** The Julian date that the form was completed.

64. **UIC.** Identify the organization/activity reporting the loss. If a contractor enter the CAGE code prefixed with a "K."

65. **MAN-HOURS.** Leave blank.

66. **REASON FOR LOSS.** Enter the Loss Code (table 1-13) that best describes the reason for the loss.

67 through 69. Leave blank.

70. **INSPECTION AND ACTION CODES.** Enter the appropriate letter ("A" for Serviceable or "B" for Unserviceable) in the small block next to the corrective action.

71. **PID AND TELEPHONE NUMBER.** The individual completing the form will enter his or her PID and phone number (DSN/Commercial). The phone number and PID will be used at the national level to clarify entries.

72. **SHIPPED TO.** Enter the name of the service, agency, department or MAP country shipped to.

73. **LOCATION.** Enter the address of the activity identified in block 72.

74. **UIC.** Enter the Unit Identification Code for the activity in block 72. If a contractor enter the CAGE code prefixed with a "K."

75. **Date shipped.** Enter the Julian date that the item was shipped.

NOTE: Mail a photocopy of the DA Form 2410 to AMCOM. If the item has its own separate DA Form 2408-16 or 2408-16-1, make a photocopy of the form and send the copy to AMCOM with the copy of the DA Form 2410. The original DA Form 2410 and DA Form 2408-16 or 2408-16-1 will remain with the part.
### DD Form 1574 and DD Form 1574-1 Serviceable Tag/Label-Materiel (Color Yellow)

#### Legend for Figure 3-26:
**Preparation Instructions (by block title) for completion of DD Form 1574 and DD Form 1574-1 Serviceable Tag/Label-Materiel (Color Yellow)**

- **FSN, PART No. AND ITEM DESCRIPTION.** National Stock Number, Part Number, and item name.
- **NEXT INSPECTION DUE/OVERDUE DATE.** Date (dd mmm yy) the next inspection is due or the item becomes outdated.
- **CONDITION CODE.** Condition Code that applies. (appendix C)
- **INSPECTION ACTIVITY.** Name and UIC of the activity that certified the item’s condition. If it is a contractor, enter the proper CAGE code preceded with the letter "K."
- **SERIAL NO./LOT NO.** Item’s Serial Number, or if the item is bulk (for example, cord, webbing, rubber, and so on) the Lot Number.
- **UNIT OF ISSUE.** Unit of Issue; for example, each (ea), gross (gr), pound (lb), dozen (dz), and so forth.
- **CONTRACT OR PURCHASE ORDER NO.** Contract Number found on the item data plate, or Purchase Order Number. If you cannot find the Contract or Purchase Order Number enter "UNK."
- **QUANTITY.** How many items this tag/label represents.
- **INSPECTOR’S NAME OR STAMP AND DATE.** The inspector appointed by the commander will sign or
stamp and date this block after they inspect the item and certify the condition. For non-military activities, the person certifying the condition of the item will sign or stamp and date this block.

REMARKS. For TC, RC, and CC components listed in TB 1-1500-341-01, enter the following data: DA Form 2410 Control Number, time since new, time since last overhaul/rebuild, and number of previous overhauls/rebuilds (Round operating time to the nearest hour. Get this information from the DA Form 2410, 2408-16, or 2408-16-1). Enter action taken to make the item serviceable, or other information that will help in management of aviation and aviation associated equipment. For example, 30 day PMCS due 25 Sep 91; 90 day purge due 24 Nov 91; and collimation due 22 Feb 92, for NVG.

Figure 3-27. Sample of a completed DD Form 1575 and DD Form 1575-1, Suspended Tag/Label-Materiel (Color Brown)

Legend for Figure 3-27:
Preparation Instructions (by block title) for completion of DD Form 1575 and DD Form 1575-1 Suspended Tag/Label-Materiel (Color Brown)

NSN, PART NO AND ITEM DESCRIPTION. National Stock Number, Part Number, and item name.

NEXT INSPECTION DUE. Date (dd mmm yy) the next inspection is due, or the item becomes outdated. If it does not apply, leave blank.

CONDITION CODE. Condition Code that applies. (appendix C)

INSPECTION ACTIVITY. Name or UIC of the activity
that certified the item’s condition. If a contractor enter
the proper CAGE code preceded by the letter "K."

REASON OR AUTHORITY. Reason or authority for
item suspension (example, awaiting condition classifica-
tion).

SERIAL NUMBER/LOT NO. Serial Number, or if the
item is bulk (for example, cord, webbing, rubber, and
so on) enter the Lot Number.

UNIT OF ISSUE. Unit of issue, for example, each (ea),
gross (gr), pound (lb), dozen (dz), and so on.

CONTRACT OR PURCHASE ORDER NO. Contract
Number, found on the item data plate, or the Purchase
Order Number. If you cannot find the Contract or Pur-
chase Order Number enter “UNK.”

QUANTITY. The number of items this tag/label repre-
sents.

INSPECTOR’S NAME OR STAMP AND DATE. The
inspector appointed by the commander will sign or
stamp and date this block after they inspect the item
and certify the condition. For non-military activities, the
person certifying the condition of the item will sign or
stamp and date this block.

REMARKS. For “TC,” “RC,” and “CC” components list-
ed in TB 1-1500-341-01 enter the following data: DA
Form 2410 Control Number, time since new, time since
last overhaul/rebuild, and number of overhauls/rebuilds
(Round operating time to the nearest hour. Get this
information from the DA Form 2410, 2408-16, or 2408-
16-1).
<table>
<thead>
<tr>
<th>FSN, PART NO. AND ITEM DESCRIPTION</th>
<th>TEST / MODIFICATION TAG/ MATERIAL</th>
<th>CONDITION CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2840-01-093-7451 PIN 1-000-060-10A ENGINE, TURBINE</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>SERIAL NO./LOT NO. LE-14431</td>
<td>NO. FTE 90-135</td>
<td></td>
</tr>
<tr>
<td>UNIT OF ISSUE EA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUANTITY 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT OR PURCHASE ORDER NO. 912G291</td>
<td>INSPECTOR'S NAME OR STAMP AND DATE</td>
<td></td>
</tr>
<tr>
<td>INSPECTION ACTIVITY WAYTAA</td>
<td>L. Simonw 10 JUL 91</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-28A. Sample of a completed DD Form 1576 and DD Form 1576-1, Test/Modification Tag/Label-Materiel (Color Blue); Illustration #1
Figure 3-28B. Sample of a completed DD Form 1576 and DD Form 1576-1, Test/Modification Tag/Label-Materiel (Color Blue); Illustration #2

Legend for Figure 3-28B:
Preparation Instructions (by block title) for completion of DD Form 1576 and DD Form 1576-1 Test/Modification Tag/Label-Materiel (Color Blue)

FSN, PART NO. AND ITEM DESCRIPTION. National Stock Number, Part Number, and item name.

CONDITION CODE. Condition Code "D." (appendix C)

AUTHORITY. The MWO, SOF Message, TB number, or AOAP laboratory recommendation number. When an AVIM unit repairs Aviation Night Vision Goggles and replaces the image intensifier tube(s) enter the remark "Distortion evaluation is required prior to use."

DATE. The date (dd mmm yy) of the MWO, SOF Message, TB, or AOAP laboratory recommendation.

SERIAL NUMBER/LOT NUMBER. The Serial Number, or if the item is bulk (for example, cord, webbing, rubber, and so on), enter the Lot Number.

UNIT OF ISSUE. The Unit of Issue (for example, each (ea), gross (gr), pound (lb), dozen (dz), and so forth).

QUANTITY. The number of items this tag or label represents.

CONTRACT OR PURCHASE ORDER NO. The Contract Number, found on the item data plate, or Purchase

Da Pam 738-751 • 15 March 1999
Order Number. If you cannot find the Contract or Purchase Order Number, enter "UNK."

**INSPECTION ACTIVITY.** The name or UIC of the activity that certifies the item's condition. If a contractor enter the proper CAGE code preceded by the letter "K."

**INSPECTOR’S NAME OR STAMP AND DATE.** The inspector appointed by the Commander will sign or stamp and date this block after they inspect and certify the item’s condition. For non-military activities, the person certifying the condition of the item will sign or stamp and date this block.

NOTE: For "TC," "RC," and "CC" components listed in TB 1-1500-341-01 enter the following data on the back of the tag: DA Form 2410 Control Number, Time Since New, Time Since Last Overhaul/Rebuild, and number of overhauls/rebuilds (Round operating time to the nearest hour. Get this information from the DA Form 2410, 2408-16, or 2408-16-1).

---

![Sample of a completed DD Form 1577 and DD Form 1577-1, Unserviceable (Condemned) Tag/Label-Materiel (Color Red)](image)

---

**Figure 3-29. Sample of a completed DD Form 1577 and DD Form 1577-1, Unserviceable (Condemned) Tag/Label-Materiel (Color Red)**
Legend for Figure 3-29:
Preparation Instructions (by block title) for completion of DD Form 1577 and DD Form 1577-1 Unserviceable (Condemned) Tag/Label-Materiel (Color Red)

**NSN, PART NO. AND ITEM DESCRIPTION.** National Stock Number, Part Number, and item name.

**INSPECTION ACTIVITY.** The name or UIC of the activity that certifies the item’s condition. If the activity is a contractor enter the proper CAGE code prefixed with the letter "K."

**CONDITION CODE.** Condition Code "H." (appendix C)

**REASON OR AUTHORITY.** The reason or authority for condemnation of the item (for example, Rotor Blade spar cracked).

**SERIAL NUMBER/LOT NUMBER.** The Serial Number, or if the item is bulk (for example, cord, webbing, rubber, and so on), enter the Lot Number.

**UNIT OF ISSUE.** The Unit of Issue (for example, each (ea), gross (gr), pound (lb), dozen (dz), and so on).

**QUANTITY.** The number of items this tag or label represents.

**INSPECTOR’S NAME OR STAMP AND DATE.** The inspector appointed by the Commander will sign or stamp and date this block after they inspect and certify the item’s condition. For non-military activities, the person certifying the condition of the item will sign or stamp and date this block.

**REMARKS.** Enter a statement that the item has been condemned and mutilated per TM 1-1500-328-23.
### Figure 3-30. Sample of a completed DD Form 1577-2 and DD Form 1577-3, Unserviceable (Reparable) Tag/Label-Materiel (Color Green)

<table>
<thead>
<tr>
<th>FSN, PART NO. AND ITEM DESCRIPTION</th>
<th>UNSERVICEABLE (REPARABLE) TAG - MATERIEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1615-00-911-9292 PIN 540-011-450-7 SWASHPLATE SUPPORT ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td><strong>INSPECTION ACTIVITY</strong></td>
<td><strong>CONDITION CODE</strong></td>
</tr>
<tr>
<td>68TH TRANS CO.</td>
<td>F</td>
</tr>
<tr>
<td><strong>REASON FOR REPARABLE CONDITION</strong></td>
<td><strong>ALLOWABLE OPERATING TIME</strong></td>
</tr>
<tr>
<td>REACHED MAXIMUM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIAL NO./LOT NO.</th>
<th>UNIT OF ISSUE</th>
<th>REMOVED FROM</th>
<th>QUANTITY</th>
<th>INSPECTOR’S NAME OR STAMP AND DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1192861</td>
<td>EA</td>
<td>UH-1H 7422500</td>
<td>1</td>
<td>B. Meyer 29 JUN 90</td>
</tr>
</tbody>
</table>

| TSN: 2400 | TSO: 1205 | NRTS: 1 | 25 JUN 90 | 68TH TRANS CO. |

#### Legend for Figure 3-30:

- **Preparation Instructions (by block) for Completion of DD Form 1577-2 and DD Form 1577-3 Unserviceable (Reparable) Tag/Label-Materiel (Color Green)**

  - **FSN, PART NO. AND ITEM DESCRIPTION.** The National Stock Number, Part Number, and item name.
  
  - **INSPECTION ACTIVITY.** The name or UIC of activity that certified the item's condition. If it is a contractor, enter the proper CAGE code prefixed by the letter "K."

  - **CONDITION CODE.** The Condition Code that applies for reparable items. (appendix C)

  - **REASON FOR REPARABLE CONDITION.** The reason for reparable condition (for example, leaks fluid).

  - **SERIAL NO./LOT NO.** The Serial Number, or if the item is bulk (for example, cord, webbing, rubber) enter the Lot Number.

  - **UNIT OF ISSUE.** The Unit of Issue (for example, each (ea), gross (gr), pound (lb), dozen (dz), and so on).

  - **REMOVED FROM.** Aircraft MDS and Serial Number from which the item was removed. When the item is removed from a component/module or part, enter the model and serial number of the component/module or part.

  - **CONTRACT OR PURCHASE ORDER NO.** Enter the Contract Number, found on the item data plate, or Purchase Order Number. If you cannot find the Contract or Purchase Order Number enter "UNK."
Chapter 4
Historical Forms and Records

4–1. General-historical forms
a. Historical records are kept on specific aircraft components/modules, accessories, and mission essential equipment aboard aircraft. They show needed information and events in the life of aircraft and aviation associated equipment.
b. The records must be controlled and kept safe from loss or damage due to fire, smoke, or water by aviation maintenance and supply activities that operate, maintain, and store aircraft, aviation associated equipment, and reportable components/modules.
c. These records give commanders and maintenance managers information on equipment transfers, gains, losses, usage, firing data, modifications, overhauls, rebuilds, accidents/mishaps, and AOAP events. They show needed information and events in the life of aircraft or training devices/simulators. Complete the actions below for aircraft or training devices/simulators listed in appendix D.
d. Historical records will be filled out by typewriter, blue or black ball point pen, or computer unless the specific instructions state to use pencil.

4–2. Missing historical records or information.
When aircraft, aviation associated equipment, or serialized reportable components/modules are received without maintenance and historical records called for in appendix D, the Army aviation unit or contract support activity that receives the component/module will take the following action:
a. Request missing records from the transferring or shipping activity.
b. When missing records or information are not available from (1) above, obtain the information needed from local sources; for example, DD Form 1574/1574–1, or other materiel condition tags and labels covered in chapter 3.
c. Prepare new maintenance and historical forms per procedures in chapters 3 and 4 when the missing information is obtained.
d. When (a) and (b) above do not produce the needed information, you can request usage data and other missing information from Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (2410, Redstone Arsenal, Huntsville, AL 35808–5000. Give complete description, to include PN and serial number, whether the item is serviceable or unserviceable, installed or uninstalled, and if installed the next higher assembly serial number for each aircraft, aviation associated equipment, or component/module, and state the records or information needed. Or contact the appropriate 2410 Hot Line number listed below:
   (1) All Corpus Christi Army Depot personnel, contact DSN 861–4544, commercial (512) 939–4544, Army Depot, Mail Stop 55, Corpus Christi Army Depot, TX 78419–6195.
   (2) All AVUM and AVIM activities including AVCRADs, contact DSN 897–2410, commercial (256) 313–2410; Data Fax DSN 746–4904, commercial (256) 876–4904; or e-mail data2410@redstone.army.mil.
   (3) All other DOD personnel or contractors to DOD activities, contact DSN 746–2851, Commercial (256) 876–2851; Data Fax DSN 746–4904, Commercial (256) 876–4904; or e-mail cfo@redstone.army.mil.
   Note. Do not open packages, cartons, or containers containing aircraft components/modules that are preserved for shipment or storage merely to complete or check/inspect historical records.

4–3. DA Form 2408–5, Equipment Modification Record.
   a. Purpose of DA Form 2408–5. Records the requirement for and the application of all authorized DA modifications to the aircraft and aircraft training devices/simulators listed in appendix D. (See fig 4–1)
   b. Use. A permanent record to document all modifications for aircraft and aircraft training devices/simulators listed in appendix D.
   c. General instructions.
      (1) Entries will be made on DA Form 2408–5 when an MWO is received that is applicable to the aircraft. If you learn that an MWO has been issued for the aircraft and was not applied, enter the MWO requirement on this form.
      (2) MWOs applied to aircraft will normally be accomplished by depot level maintenance activities, such as, the Project OLR contract field team, CCAD, or contract maintenance activities performing overhaul/repair. Therefore, the depot level maintenance activities will complete the MWO entry when the MWO is applied.
      (3) MWO entries will be kept current. The DA Form 2408–5 is the only historical record that shows the current configuration of the aircraft or training device/simulator. Complete the actions below for the conditions and situations described.
         (a) An MWO that supersedes a previous MWO. If the previous MWO has been applied, compare it with the new MWO to determine if more work is needed.
             1. If more work is needed line out the old modification entry, enter “Superseded by (MWO number)” in block 4, and enter the new MWO information on the form.
             2. If no other work is needed, line out the replaced modification entry and enter “PCW” in block 6. The organization, PID of the person who determined the MWO was already complied with, and date will be entered in blocks 6, 7, and 8.
             3. If the superseded MWO has not been applied, line out the replaced MWO entry and enter “Superseded by (MWO number)” in block 4. Enter the replacing MWO in the next open line completing blocks 4 and 5. The rest of the blocks will be completed when the MWO is applied.
         (b) Canceled MWO (AR 750–10).
             1. If the canceled MWO has already been completed, take no further action. These entries will serve as historical events.
             2. If the canceled MWO was never entered on the form, do not enter it on the form.
             3. If the canceled MWO was entered on the form but has not been completed enter “CANCELED” in block 4 and complete blocks 6, 7, and 8.
      Note. A report of MWO application should be submitted on DA Form 2407. This also applies to MWOs that were applied but not recorded on DA Form 2408–5.
      (c) If it is determined that a current MWO has been applied, but not recorded on DA Form 2408–5, take the actions below.
         1. Enter the data from the MWO in blocks 4 and 5.
2. Enter the organization, and PID of the person who determined that the MWO was applied, in blocks 6 and 7.
3. Enter the date, that the owning unit/activity found the MWO was applied, in block 8. Enter “PCW” above the date.
4. Enter the estimated manhous, shown in the MWO, in block 9.
   (d) If it is determined that an MWO has not been applied but is recorded as applied, draw a single line through the entry.
   (e) If an unapplied MWO is recorded, but not applicable to the aircraft in the present unit or location, enter “N/A this (location or mission)” using a black lead pencil in block 6.
   d. Disposition.
      (1) DA Form 2408–5 is a permanent record for the aircraft.
      (2) If the aircraft is transferred to another unit or activity the DA Form 2408–5 will be shipped with the aircraft file (see para 1–15).

4–4. DA Form 2408–5–1, Equipment Modification Record (Component).

   a. Purpose. The DA Form 2408–5–1 shows SOF messages/ASAMs/TBs, other one-time inspections, and MWOs on serialized reportable components/modules listed in TB 1–1500–341–01 (See fig 4–2).
   b. Use. A permanent record for serialized reportable components/modules used on aircraft and aviation equipment listed in appendix D.
   c. General instructions.
      (1) Entries will be made on DA Form 2408–5–1 when the MWO, SOF message, ASAM, TB or one-time inspection is received. If you learn that an MWO, SOF message, ASAM, TB, or one-time inspection has been issued on serialized reportable components/modules and was not applied, enter the requirement on this form.
      (2) SOF message, ASAM, TB, MWO, and one-time inspection entries must be kept current. This is the only historical record the owning unit has that shows the current configuration of reportable component(s)/module(s).
      (3) SOF messages, ASAMs, TBs, one-time inspections, and MWOs, applied to reportable components, are done at all levels of maintenance. The maintenance activity that applies the SOF, ASAM, TB, one-time inspection, or MWO will annotate the current form or start a new form.
      (4) A SOF message, ASAM, TB, one-time inspection, or MWO that supersedes a previous SOF message, ASAM, TB, one-time inspection, or MWO. If the previous directive has been applied, compare it with the new directive to determine if more work is needed.
         (a) If more work is needed, line out the old directive entry, enter “Superseded by (number only)” in block 4, and enter the new directive on the form.
         (b) If no other work is needed, line out the replaced directive entry and enter “PCW” in block 6. The organization, PID of the person who determined the directive was already applied, and date will be entered in block 6, 7, and 8.
         (c) If the superseded directive has not been applied, line out the directive that was replaced and enter “Superseded by (number only)” in block 4. Enter the replacing directive in the next open line completing blocks 4 and 5. The rest of the blocks will be completed when the directive is applied.
         (d) Canceled SOF message, ASAM, TB, one-time inspection or MWO
            1. If the canceled directive has been completed, take no further action. These entries will serve as historical events.
            2. If the canceled directive was never entered on the form do not enter it on the form.
            3. If the canceled directive was entered on the form but has not been completed enter “CANCELED” in block 4 and complete blocks 6, 7, and 8.

Note. A report of SOF message, ASAM, TB, and one-time inspection application should be submitted per the directive. This also applies to SOF messages, ASAMs, TBs, one-time inspections, and MWOs that were applied but not recorded on DA Form 2408–5–1. MWO application should be submitted on a DA Form 2407.
   (e) If it is determined that a current SOF message, ASAM, TB, one-time inspection, or MWO has been applied, but not recorded on DA Form 2408–5–1, take the actions below.
      1. Enter the data from the directive in blocks 4 and 5.
      2. Enter the organization, and PID of the person who determined that the directive was applied, in blocks 6 and 7.
      3. Enter the date, that the owning unit/activity found the directive was applied, in block 8. Enter “PCW” above the date.
      4. Enter the estimated manhous shown in the directive in block 9.
   (f) If it is determined that a SOF message, ASAM, TB, one-time inspection, or MWO has not been applied, but is recorded as applied, draw a single line through the entry.
   e. Disposition.
      (1) DA Form 2408–5–1 is a permanent record for the reportable component/module.
      (2) If the reportable component/module is transferred to another unit or maintenance activity the DA Form 2408–5–1 will be shipped with the component/module. For reportable components/modules installed on an aircraft, that is transferred to another unit or activity, the DA Form 2408–5–1 will be shipped with the aircraft file (see para 1–15).
      (3) When serviceable reportable components/modules are removed from aircraft or associated aviation equipment, the DA Form 2408–5–1 will be placed in a protective cover and attached to the component/module.
      (4) When components/modules are installed on aircraft, the DA Form 2408–5–1 will be in the aircraft historical file (see para 1–15).

4–5. DA Form 2408–15, Historical Record for Aircraft.

   a. Purpose. The DA Form 2408–15 provides historical data on the aircraft and associated equipment throughout its service life (see fig 4–3).
   b. Use.
      (1) This form is used for aircraft and aircraft training devices/simulators identified in appendix D, to record significant historical data such as—
         (a) Overhaul, conversions, or major repairs.
         (b) Accomplishment of SOF messages, ASAMs, and/or TBs on the aircraft airframe and related systems and subsystems.
         (c) Scheduled inspections such as phase or periodic. For example, Phase #2 Inspection completed at 2029 acft. hrs., 228th Avn CO, Ft. Hood, TX.
         (d) Accidents, mishaps, rotor over speed, rotor blade strikes, hard landings, and related follow-on special inspections called for in the applicable -23 TM.
         (e) Other information that is considered to be of significant historical value and will serve as a useful purpose to activities receiving the aircraft for operation, maintenance, overhaul, or rebuild; for example, 'aircraft flown through contaminated area,' or 'aircraft exposed to salt water or salt water spray.'
         (f) Airframe Condition Evaluation (ACE), critical inspection results and findings.
      (2) This form stays with an aircraft or maintenance training airframe from its induction into the Army inventory to its disposal.
      (3) This form may be used as a continuation page for Block 7 of DA Form 2408–16 and Block 14 of DA Form 2408–16–1, by units not using ULLS-A or LAS. The form will be marked “DA Form 2408–XX Continuation” in the top margin of the form. Blocks 1 through 3 of the continuation page will be completed to identify the component that the continuation page pertains to.
   c. Disposition.
      (1) If the aircraft is transferred to another unit or activity the DA Form 2408–15 will be shipped with the aircraft file. The QC Section must check the form for accuracy and completeness before the aircraft is transferred.
(2) When an aircraft or maintenance training airframe is dropped from accountability, transfer the forms and records per chapter 1, including the DA Form 2408–15, to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (CDRA), Redstone Arsenal, Huntsville, AL 35898-5000.

(3) When used as a continuation page, disposal will be per the disposition instructions for the form that it is a continuation of.

4–6. DA Form 2408–15–2, Aircraft Vibration Record.

a. Purpose. The DA Form 2408–15–2 provides a visual record of the results of all vibration tests done on Army helicopter component drive shafts. This form is designed to record vibration tests at the lateral, longitudinal, and vertical axis for one or more component drive shafts (see fig 4–4).

b. Use. This form is used to —

(1) Record vibration test results in inches per second (IPS) for component drive shaft frequencies for the lateral, longitudinal, and vertical axis.

(2) Record other significant historical information and actions taken to reduce vibration; such as rotation of number 2 cross shaft 90 degrees clockwise, or replacement of components and repair parts.

(3) Provide reliability centered maintenance (RCM) data to the wholesale maintenance operations for possible improvement of equipment and maintenance procedure.

c. Disposition.

(1) If the aircraft is transferred to another unit or activity the DA Form 2408–15–2 will be shipped with the aircraft file. The QC Section must check this form for accuracy and completeness before the aircraft is transferred.

(2) When the DA Form 2408–15–2 has both sides completely filled out, a new form will be prepared. Retain the old form in the historical records until the first vibration check is entered on the new form. Then attach the old form to the Flight Pack last filed in the aircraft 6-month file. Dispose of the form per the disposition instructions for DA Form 2408–13–1.

4–7. DA Form 2408–16, Aircraft Component Historical Record.

a. Purpose. This form provides a permanent record of historical data and events for selected TC, RC, and CC components/modules and parts that are removed and replaced at specific aircraft operating hours. This form will stay with the aircraft, component/module, and/or parts throughout their service life (see fig 4–5).

b. Use.

(1) For TC, RC, and CC components/modules and parts, listed in TB 1–1500–341–01, for each MDS of aircraft listed in appendix D.

(a) Aircraft TC and RC components/modules and parts will be combined on one form. This form will have “Time Change Components” printed in the top margin on both sides of the form.

(b) Aircraft CC components/modules and parts will have a separate form. This form will have “Condition Items” printed in the top margin of both sides of the form.

(c) Do not enter “Time Change Components” or “Condition Items” in the top margins of component’s separate DA Form 2408–16.

(d) When this form is prepared for major components identified in TB 1–1500–341–01, it may contain a mixture of TC, RC and CC components/modules and parts.

(2) To record needed information on—

(a) Field replacement TC, RC, and selected CC components/modules and parts installed on an aircraft or major assembly.

(b) Depot replacement TC, RC, and selected CC components/modules and parts installed in a major assembly.

(c) Major components that require a narrative record of historical data.

(d) The HSF counts when the T703 engine is removed and replaced.

(3) The information recorded on DA Forms 2410 and 2408–16 is related. The ‘No Prev O/H,’ ‘Time Since Last Inst (Hrs),’ ‘Time Since New (Hrs),’ and ‘Time Since Overhaul (Hrs)’ removal entries for the DA Form 2410, Copy 1, are taken from DA Form 2408–16. The ‘No Prev O/H,’ ‘Time Since Last Inst (Hrs),’ ‘Time Since New (Hrs),’ and ‘Time Since Overhaul (Hrs)’ installing entries for the DA Form 2408–16 are taken from DA Form 2410, Copy 3.

c. Special instructions.

(1) The correct aircraft operating hours, component/module operating hours, and the frequency that components/modules are due replacement is important when the DA Form 2408–16 is filled out. Close attention should be given to the simple arithmetic, and replacement schedule, contained in the applicable aircraft TM -23, when figuring out removal/replacement times and when the replacement is actually due. Extra time should be taken by the person filling this form out, and by QC personnel that review/inspect forms and records. Accuracy on this form will go a long way toward safer flying aircraft.

(2) Replacement of selected aircraft components/modules, for other than failure or reuse, will be done when the operating time of the component/module reaches its MAOT per TM 1–1500–328–23.

(3) Components/modules and parts that are replaced on a calendar basis will be recorded on a DA Form 2408–18.

(4) When the engine on an OH-58D helicopter is removed the total HSF counts, entered in block 11 of the DA Form 2408–13, will be entered in block 7 of the engine DA Form 2408–16.

(5) APUs installed on H-60 series aircraft, T-700 series gas turbine engines, modules and sub components will not be recorded on the DA Form 2408–16. They will be recorded on DA Form 2408–16–1, since they are not tracked by aircraft hours.

(6) Aircraft survivability equipment electronic countermeasures and avionics systems LRUs/black boxes that have software installed and are designated in TB 1–1500–341–01 will enter the software version in the lower half of block 6c (Component Ser NO. Location).

(7) Enter the pitch housing weight for the AH-64 main rotor head assembly in the lower half of block 6c (Component Ser NO. Location).

d. General instructions.

(1) The manufacturer will prepare this form when an aircraft or selected components/modules are accepted into the Army inventory. There may be times when this form must be prepared for reportable components/modules already in service. If this occurs, the in-service item(s) will be added to TB 1–1500–341–01, and the owning activity will prepare the form. The item may be installed, serviceable unininstalled, or unserviceable uninstall. Enter only known data at the time of next installation or overhaul.

(2) When items entered on this form are removed, and blocks 6f and 6i have been completed, line through the existing entry. When a replacement item is installed, enter the replacement’s data on the next open line.

(3) When an item is removed from TB 1–1500–341–01, line-out the item and enter this statement above the lined-out entry; “Deleted per TB 1–1500–341–01 (or other directive; such as, SOF message, ASAM, TB, or MWO) and date.”

(4) Fill in both sides of the form before starting a new form.

(5) When a NSN has not been assigned to an item listed in TB 1–1500–341–01, enter “NSN Pending” in the bottom portion of block 6b using a black lead pencil. When the NSN is assigned, erase the pencil entry and enter the assigned NSN.

(6) When the DA Form 2408–16 has been lost, destroyed, or becomes worn prepare a new form. Make an entry in block 7 such as, “(date) — All current entries as of (date) were transposed from an illegible form. (Signature, unit, and address).” If necessary get the data for the new form from Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (2410), Redstone Arsenal, Huntsville, AL 35898-5000.

(7) If a reportable major component/module, that has its own separate DA Form 2408–16, is replaced on a transient aircraft, and the form is located back at the home station maintenance office, the activity that replaced the item will —

(a) Immediately telephone, FAX, or e-mail a message to the owning unit informing them of the maintenance action.
(b) Request that the DA Form 2408–16, for the unserviceable item, be forwarded by the fastest means possible. The method of shipment must use a procedure that can track the location of the package, in case the form does not arrive at the receiving unit/agency, the DA Form(s) 2408–16 will be shipped with the aircraft file (see para 1–19). The QC Section must check this form for accuracy and completeness before the aircraft is transferred.

(2) When you prepare a new form for one that is destroyed or worn, send the old form to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (TACTS), Redstone Arsenal, Huntsville, AL 35898-5000. Use a DA Form 2408–15 as a continuation page. Print “DA Form 2408–15–1 Continuation” in the top margin of the DA Form 2408–15 and complete the heading blocks with the engine, component/module, or APU information and attach to the DA Form 2408–16–1. The following instructions pertain when the form is used for an APU:

(a) Field replacement TC, RC, and selected CC components while installed on the engine.
(b) Depot replacement of all major components and subcomponents on the engine.
(c) APUs and components identified in TB 1–1500–341–01.

d. Special instructions.

(1) The correct operating hours and replacement hours for major components and subcomponents are very important when you fill out the DA Form 2408–16–1. Close attention should be given to the replacement schedule in the applicable -23 TM, and the procedures to compute the replacement time entered in block 13 on the backside of the form. Extra care should be taken by the person entering the information and by the quality control personnel reviewing the forms. Accuracy on this form will go a long way toward safer flying aircraft.

(2) When more space is needed, in block 14, for significant historical data, units/activities that do not use ULLS-A or LAS may use a DA Form 2408–15 as a continuation page. Print “DA Form 2408–16–1 Continuation” in the top margin of the DA Form 2408–15 and complete the heading blocks with the engine, component/module, or APU information.

4–8. DA Form 2408–16–1, History Recorder, Component, Module Record.

a. Purpose.

(1) This form provides a permanent record of historical data for selected TC, RC, and CC components and subcomponents for turbine engines equipped with a history recorder to collect total cumulative operating hours and history recorder counts, including the Low Cycle Fatigue (LCF-1 and LCF-2), Time-Temperature Index (TTI), and engine, component, or subcomponent operating hours. The data recorded on the DA Form 2408–16–1 is important information and extra care should be taken to keep it current and accurate. The data is used to complete DA Form 2410s, and by AMCOM to track and manage selected items.

(2) The DA Form 2408–16–1 provides a permanent record of historical data for H-60 series aircraft APUs and installed components, that are listed in TB 1–1500–341–01. Data collected includes the number of prior overhauls, starts since overhaul, starts since new, and operating hours since new in the LCF1, LCF2, TTI, and Operating Hours blocks.

(3) This form will remain in the aircraft historical file as long as the turbine engine or APU is installed on the aircraft. The form will stay with the APU, engine, major component, or subcomponent when the item is removed for evacuation to supply, or support maintenance, including depot. (See figs 4–6 through 4–13.)

b. Use.

(1) Use this form for all T-700 series engines, components, subcomponents, and APUs used on H-60 series helicopters, listed in TB 1–1500–341–01. Use a separate form for each component that has reportable subcomponents installed.

(2) The DA Form 2408–16–1 may have a mixture of TC, RC, and CC subcomponents and is used to record needed information on—
(m) Block 13 — REPLACEMENT DUE (HIST RCDR HR). Replacement time must be calculated.
(n) Block 14 — SIGNIFICANT HISTORICAL DATA. All significant historical data on APUs and subcomponents.
d. General instructions.
(1) The manufacturer of aircraft listed in appendix D, or reportable items listed in TB 1–1500–341–01, will prepare a DA Form 2408–16–1 when an engine, APU or selected reportable items are accepted into the Army inventory.
(2) There may be times when this form must be initiated for reportable items already in service. If this occurs, the in-service item(s) will be added to TB 1–1500–341–01 and any activity owning or performing any level of maintenance (organic or contract including depot) will make the required entries on this form. The items may be installed, uninstalled, serviceable, or unserviceable.
(3) When item(s) entered on this form are removed, line through the existing entry. When a replacement item is installed, enter data for the replacement item on the next open line.
(4) When all lines are filled, prepare another form and attach it to the original form.
(5) When an item is deleted from TB 1–1500–341–01, line out the item and enter this statement above the lined-out entry; “Deleted per TB 1–1500–341–01 (or other directive, such as, SOF message, ASAM, TB or MWO) and the date.”
(6) If the DA Form 2408–16–1 has been lost, destroyed, or becomes worn prepare a new form. If necessary, contact the Commander, AMC, ATTN: AMSAM-MMC-RE-FD (2410), Redstone Arsenal, Huntsville, AL 35898-5000. Sources of data where the information may be found locally are other related forms, records, or condition tags. When you prepare a new form, destroy the damaged one. Make an entry on the backside of the new form in block 14 stating that a new form was made and all entries were transferred, include the date (dd mmm yy), PID, organization, and location of the person entering the data. The old form should be maintained for 1 year, then destroyed.
(7) If a reportable component or subcomponent, that has its own DA Form 2408–16–1, is replaced on a transit aircraft and the form is located back at the home station maintenance office, the activity that replaced the item will—
(a) Immediately telephone, FAX, or e-mail a message to the owning unit informing them of the maintenance action.
(b) Request the DA Forms 2408–16–1 and 2410 be forwarded by the fastest means possible. The method of shipment must use a procedure that can track the location of the package in case the forms do not arrive at the receiving unit or activity.
(c) Hold the unserviceable item until the forms are received and the entries are recorded.
e. Disposition.
(1) When the engine is removed from the aircraft, or a component requiring a separate DA Form 2408–16–1, is removed from the engine for evacuation to supply or support maintenance, the form(s) will be prepared for that item and removed from the aircraft historical files. These forms including the related DA Form 2410 will be packaged to protect them from oil and dirt and sent with the removed item.
(2) When the component or subcomponent is dropped from accountability by disposal through the DRMO, complete a DA Form 2410, Copy 3, showing a “J” code loss to the Army inventory, and send a photocopy of the DA Forms 2408–16–1 and 2410, Copy 3, to Commander, AMC, ATTN: AMSAM-MMC-RE-FD (TACTS), Redstone Arsenal, Huntsville, AL 35898-5000.
Note. See TM 1–1500–328–23 for mutilation of condemned aeronautical equipment before disposal.
(3) When an aircraft is transferred to another U.S. Government agency, the DA Forms 2408–16–1 will be shipped with the aircraft file (see para 1–19). The Quality Control section must check this form for accuracy and completeness before the aircraft is transferred.
(4) When an aircraft is transferred to a MAP country the DA Forms 2408–16–1 will be shipped with the aircraft file (see para 1–19). The QC section must check this form for accuracy and completeness before the aircraft is transferred. A readable photocopy will be mailed to AMCOM so they can generate DA Form 2410s, Copy 3, to show a “K” loss to the Army inventory for each reportable component and subcomponent installed.

4–9. DA Form 2408–17, Aircraft Inventory Record.
a. Purpose. The form provides a checklist of items assigned to an aircraft that are subject to a periodic inventory. (See fig 4–14.)
b. Use. For aircraft identified in appendix D as a record of—
(1) All property assigned to the aircraft.
(2) Additions and deletions of equipment to the aircraft.
(3) Needed periodic inventories.
c. General instructions.
(1) The initial Aircraft Inventory Record will be prepared by the manufacturer of each aircraft accepted by the Army. The forms will be prepared with a typewriter or a blue/black ball point pen.
(2) The record will contain the items listed in the “Aircraft Master Inventory Guide” in the applicable -23 TM, or as adjusted to the theater of operations or the mission. ULLS-A users — the Master Inventory List in ULLS-A will be used as a baseline. Add, delete and modify to fit your aircraft.
(3) The commander of the organization that the aircraft is assigned to will make sure that—
(a) Entries on the Aircraft Inventory Record are made when property is lost, destroyed, added, or permanently removed from the aircraft.
(b) The DA Form 2408–17 is current and properly signed off before the aircraft is transferred.
(c) An inventory is taken when an aircraft is received, before an aircraft is transferred, and every 12 months while the aircraft is in the organization.
(d) The storage location is shown on the form when equipment is removed from the aircraft and stored.
(4) Installation of additional property is shown as follows:
(a) When items are permanently added to an aircraft after delivery, the DA Form 2408–17 must be updated. On the back side of the form, enter the authorization for the installation of the new items. Cross-reference this entry (including the affected line number) block 6, LOCATION OR REMARKS, on the back side of the form. The entry must include the information below.
1. Date of installation.
2. Date of the letter, teletype (TWX), TM, MWO, TO&E, or TDA number, or regulation that directed the installation.
3. Origin of the directive.
4. The headquarters office symbol, and subject of the directive.
5. TMs, correspondence, or regulations that establish general procedures or policy will not be used as authority. The phrase “VOCO” will not be used.
(c) Unit property will not be considered as permanently installed property.
(5) When you receive authorization to permanently remove property from an aircraft, update the DA Form 2408–17 as follows:
(a) On the back side of the form, enter the information below:
1. Date of removal.
2. Date of the letter, TWX, TM, TO&E, or TDA number, or regulation that directed the removal.
3. Origin of the directive.
4. The file number, and subject of the directive.
5. The name of the removing organization.
6. The signature of the person who did the removal.
(b) On the front side of the form, line out the item that was removed.
(6) Property that is assigned to the aircraft, but stored when not in use, will be recorded on the DA Form 2408–17 as follows:
(a) Make entries as if the item is installed on the aircraft.
(b) Show that the item is stored by making an entry in the block 6, LOCATION OR REMARKS.
(7) Property that has been temporarily removed, but has not been reinstalled when the aircraft is transferred, will be recorded on the DA Form 2408–17 as follows:
(a) Do not line out the entry on the DA Form 2408–17.
(b) Note the item as “short” in block 6, LOCATION OR REMARKS, on the back side of the form and refer to the affected item number. The entry will include the requisition number, or the ORG WON of the DA Form 2407 when the item is being sent to AVIM.

(8) When loose items and kits are shipped under separate cover because they cannot be placed on or in the aircraft being transferred, take the actions below.
(a) In block 6, LOCATION OR REMARKS, enter a remark to show the item(s) will be shipped separately. Refer to the item number of the affected item.
(b) Clearly mark the package or crate “Equipment for Aircraft S/N (acft s/n).”
(9) Record relocation of property to a different section of the aircraft as follows:
(a) Line out the initial entry for each item. Enter the new location in block 6, LOCATION OR REMARKS, on the back side of the form.
(b) Enter the item on the DA Form 2408–17 that corresponds to the new location. Make an entry in block 6, LOCATION OR REMARKS, to show that this is a new location for the item.
(10) Make entries to note replacement of property only when an item is replaced by a different type or model number.

Note. Remarks will not be needed for additions or removals once the Master Inventory Guide is updated to include the action.

(11) A new DA Form 2408–17 may be prepared per instructions in paragraph 1–7 and figure 4–14 when:
(a) Aircraft is modified to replace the provisions and components of the avionics system.
(b) Fifty percent or more of the items listed on the form were replaced during aircraft repair or overhaul.

d. Disposition. DA Form 2408–17 is a permanent part of the aircraft historical file. New DA Forms 2408–17 are prepared when all equipment check entries are filled. The equipment listed under check No. 1 on the new form will be the same as those under check No. 12 of the old form to insure that no items of equipment were deleted from the forms and that the quantity present under the last inventory of the old forms is the same as the first inventory on the new forms. Any pertinent remarks about equipment shortages, removals, or additions must be on the new form. When a new DA Form 2408–17 is prepared, keep the old form in the aircraft historical file for 2 years, then destroy.

4–10. DA Form 2408–19, Aircraft Engine Turbine Wheel Historical Record.

a. Purpose. Provides a permanent record of significant historical data on aircraft turbine engine wheels. (See fig 4–15.)

b. Use.
(1) For turbine engines installed in aircraft identified in appendix D.
(2) By the depot level maintenance activity (organic or contract support), to determine—
(a) If the turbine wheel can be overhauled.
(b) Which turbine wheel parts must be replaced during overhaul/ rebuild.
(3) This form will be filled out by the manufacturer, the depot level maintenance activity, or the unit that owns the installed or uninstalled turbine wheel.
(4) If additional copies of the DA Form 2408–19 are needed to record data, attach them to the original form. The unit/activity that makes the last and final entry in any section of the form will start a new form and attach it to the old form.
(5) The activity that does maintenance or has significant historical data about the turbine wheel is responsible for DA Form 2408–19 entries.

c. Disposition.
(1) Uninstalled turbine wheels. When you prepare a DA Form 2408–19 for an uninstalled turbine wheel, place it in a waterproof envelope with the DA Form 2410. Keep the envelope with the turbine wheel until it is installed in an engine.
(2) Turbine wheels mounted in uninstalled engines. Place the DA Form 2408–19 and any other required forms for the engine in the engine container. These forms will not be removed until the engine is installed, then enter all the data from the DA Form 2410 to the DA Form 2408–16. The historical records will then be filed in the aircraft historical file.
(3) Turbine wheels mounted in installed engines. Place the DA Form 2408–19 in the aircraft historical file.
(4) Removal of the turbine wheel. Remove the forms from the aircraft historical file and keep the DA Form 2408–19 with the engine, or with turbine wheel when the wheel is removed from the engine.
(5) Turbine wheel final disposition. When a turbine wheel is sent to the DRMO, send the DA Form 2408–19 with the turbine wheel. When a turbine wheel is transferred, send the DA Form 2408–19 with the turbine wheel in a protective envelope.

4–11. DA Form 2408–19–1, T53/T55 Turbine Engine Analysis Check Record.

a. Purpose. A semipermanent historical record, for aircraft turbine engines, that includes a progressive record of Turbine Engine Analysis Check (TEAC) for selected turbine engines. (See fig 4–16.)

b. Use.
(1) Required for aircraft turbine engines used as a main power source installed on aircraft identified in appendix D.
(2) To record TEAC results for T53 and T55 engines.

c. General instructions.
(1) This form will be prepared and provided by the manufacturer, depot, or overhaul level maintenance activity when the turbine engine is manufactured, overhauled, or rebuilt. The aviation unit/activity will maintain and update the form as necessary until the engine is removed for overhaul or rebuild.
(2) The first entries on the front side of the form will show the results of the first TEAC performed after engine installation. This form should be updated, by the unit/activity maintenance officer, or test pilot each time a TEAC is performed.
(3) Fill out the form using a typewriter, or blue/black ballpoint pen.
(4) When the aircraft is evacuated for higher level maintenance, send the form with the aircraft.

d. Disposition.
(1) Keep in the historical file for the aircraft.
(2) When an aircraft is transferred to another U.S. Government agency, the form(s) will be shipped with the aircraft file (see para 1–16). The Quality Control Section must check this form for accuracy and completeness before the aircraft is transferred.
(3) When the engine is removed from an aircraft, pack the DA Form 2408–19–1 with other required engine records and keep with the engine.
(4) When an engine overhaul/rebuild is completed, the overhaul/ rebuild facility will prepare a new DA Form 2408–19–1 and destroy the old form.

4–12. DA Form 2408–19–2, T700 Series Turbine Engine Analysis Check Record.

a. Purpose. A semipermanent historical record, for aircraft turbine engines, that includes a progressive record of aircraft TEAC for selected turbine engines. (See fig 4–17.)

b. Use.
(1) Required for aircraft turbine engines used as a main power source installed on aircraft identified in appendix D.
(2) To record TEAC results for T700 series engines.

c. General instructions.
(1) This form will be prepared and provided by the manufacturer, depot, or overhaul level maintenance activity when the turbine engine is manufactured, overhauled, or rebuilt. The aviation unit/activity will maintain and update this form as necessary until the engine is removed for overhaul. The depot or overhaul level maintenance
activity will prepare a new form and ship it along with the engine after each overhaul/rebuild thereafter.  
(2) This form will be filled out with typewriter, or blue/black ballpoint pen.  
(3) This form should be updated, by the unit/activity maintenance officer, or test pilot each time a TEAC is performed.  
(4) When the aircraft is evacuated for higher level maintenance, send this form with the aircraft.

d. Disposition.

(1) Keep the form in the historical file for the aircraft.  
(2) When an aircraft is transferred to another U.S. Government agency, the form(s) will be shipped with the aircraft file (see para 1–16). The QC section must check this form for accuracy and completeness before the aircraft is transferred.  
(3) When the engine is removed from an aircraft, pack the DA Form 2408–19–2 with the other engine records and ship them with the engine.  
(4) When the engine overhaul/rebuild is completed, the overhaul/rebuild facility will prepare a new DA Form 2408–19–2 and destroy the old form.

4–13. DA Form 2408–19–3, Engine Component Operating Hours Record.

a. Purpose. A form, used monthly, to report aircraft, aircraft hours, engine serial numbers, history recorder serial numbers and current history recorder readings. A semipermanent historical record for T-700 series turbine engines. (See fig 4–18.)

b. Use.

(1) For all aircraft that have T-700 series engines installed.  
(2) The information recorded on the DA Form 2408–19–3 is needed at AMCOM for reconstruction of component/module historical forms and records.  
(3) By the maintenance analysis function in conjunction with other data for indication of failure trends, thus corrective action can be taken to prevent failures.  
(4) This data is also used in controlling the MAOT for T-700 series engines and components.  
(5) The unit operating the aircraft will compare the readings with past readings to ensure proper operation of the history recorders and to detect history recorder failure.

c. General instructions.

(1) The DA Form 2408–19–3 must be filled out the fifteenth of each calendar month of the year. The crew chief or assigned mechanic will read the engine history recorder, and record the current history recorder serial number, LCF 1 and 2, TTI, and operating hours. This information will then be annotated on the DA Form 2408–19–3 for all assigned aircraft with T-700 series engines. The form will be reviewed for accuracy by the technical inspector(s) serving the unit or activity.  
(2) Aircraft serial numbers will not contain hyphens or dashes, they consist of seven numerics.  
(3) This form is designed for fifteen aircraft. If there is not enough room for all aircraft assigned, use another form.  
(d) Disposition.

(1) The original copy will be filled out and sent to: Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (TACTS), Redstone Arsenal, Huntsville, AL 35898-5000, within 5 work days of filing it out.  
(2) A copy will be filed and maintained locally for 6 months, then destroyed.

4–14. DA Form 2408–20, Oil Analysis Log.

a. Purpose. A semipermanent historical record of oil and grease samples taken and results of the laboratory tests for all aircraft components in the AOAP (see fig 4–19).

b. Use.

(1) For all aircraft components in the AOAP (AR 750–1).  
(2) To record all oil and grease samples taken according to TB 43–0106.  
(3) To track trends in debris accumulation and changes in debris sizes for aircraft equipped with Oil Debris Detection System (ODDS).

c. General instructions.

(1) The DA Form 2408–20 will be kept in the logbook when the aircraft is away from home station. It will be kept in the aircraft historical file when at home station.  
(2) A separate form will be kept for each AOAP component.

d. Disposition.

(1) Keep the DA Form 2408–20 for three months in the aircraft historical file after the form is completely filled in. Then file in the current aircraft 6-month file. The form will be destroyed per the disposition instructions for DA Form 2408–13–1.  
(2) If an AOAP component is removed for repair or overhaul, send the DA Form 2408–20, along with the other historical or applicable records with the component.


a. Purpose. This form provides a record of historical data and events for the AN/ALQ-144A and for selected TC, RC, and CC components/modules and parts that are removed and replaced at specific hours of operation as indicated on the ALQ-144A Elapsed Time Indicator (ETI). This form will stay with the ALQ-144A throughout it’s service life (see fig 4–20).

b. Use.

(1) For TC, RC, and CC components/modules and parts, listed in TB 1–1500–341–01, for all AN/ALQ-144.  
(2) To record needed information on—  
   (a) Field replacement TC, RC, and selected CC components/ modules and parts installed.  
   (b) Depot replacement TC, RC, and selected CC components/ modules and parts installed in a major assembly.  
(c) Major components that require a narrative record of historical data.

(d) Meter readings when the AN/ALQ-144 is removed and replaced.

c. Special instructions.

(1) The correct AN/ALQ-144 meter readings, component/module operating hours, and the frequency that the components/modules are due replacement is important when the form is filled out. Close attention should be given to the simple arithmetic, and replacement schedule contained in the applicable TM, when figuring out removal/replacement times. Extra time should be taken by the person filling this form out, and by quality control personnel that review/inspect forms and records to be sure that all components that require tracking, per TB 1–1500–341–01, are entered on the form and that the arithmetic is correct.  
(2) Replacement of selected subcomponents, for other than failure or reuse, will be done when the operating time of the component/module reaches its maximum allowable operating time per TM 1–1500–328–23.  
(3) Complete a DA Form 2410 anytime the AN/ALQ-144 is removed, repaired or installed. When repairing the AN/ALQ-144, enter all items replaced during the repair on the reverse side of the copy 2, DA Form 2410 and mail to AMCOM.  
(4) Do not submit DA Form’s 2410 to AMCOM for subcomponents of the AN/ALQ-144. Use a DA Form 2410 for local history only for the components/modules as needed.  
(5) The AN/ALQ-144 elapsed time meter should be read the 15th of each month and checked against the subcomponents replacement times to ensure that the subcomponents are replaced on time.

d. General instructions.

(1) The manufacturer will prepare this form when an AL/ALQ-144 is accepted into the Army inventory. There may be times when this form must be prepared for components/modules already in service. If this occurs, the in-service item(s) will be added to TB 1–1500–341–01, and the owning activity will prepare the form. The item may be installed, serviceable uninstalled, or unserviceable uninstalled. Enter only known data at the time of next installation or overhaul.  
(2) When item(s) entered on this form are removed, and blocks
10e and 10g have been completed, line through the existing entry. When a replacement item(s) is installed, enter the replacement’s data on the next open line.

(3) When an item is removed from TB 1–1500–341–01, line-out the item and enter this statement above the lined-out entry: “Deleted per TB 1–1500–341–01 (or other directive such as, SOF message, ASAM, TB, or MWO) and date.”

(4) When an item is removed from TB 1–1500–341–01, line-out the item and enter this statement above the lined-out entry; “Deleted per TB 1–1500–341–01 (or other directive such as, SOF message, ASAM, TB, or MWO) and date.”

(4) Fill in both sides of the form before starting a new form.

(5) The data in blocks 6 through 9 may change as the AN/ALQ-144 is removed and replaced, if this data changes erase the entry and enter the current data. The use of transparent tape is authorized. Tape must be of the type you can print on with a pencil.

(6) When the form has been lost, destroyed, or becomes worn prepare a new form. If necessary get the data for the new form from Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (2410), Redstone Arsenal, Huntsville, AL 35898-5000. Make an entry in block 11; such as, “(date) — All current entries as of (date) were transposed from an illegible form. (PID, unit and address).”

(7) When a NSN has not been assigned to an item listed in TB 1–1500–341–01, enter “NSN Pending” in the bottom portion of block 10b using a black lead pencil. When the NSN is assigned, erase the pencil entry and enter the assigned NSN.

e. Disposition.

(1) This form will be stored with the AN/ALQ-144 when uninstalled or in the aircraft historical records when the AN/ALQ-144 is installed on the aircraft.

(2) When the item, in block 1, is removed from an aircraft for evacuation, the form(s) for that item will be removed from the aircraft historical records. The forms along with the related DA Form 2410, will be packaged and protected from oil and dirt, and sent with the removed item.

(3) Each AN/ALQ-144, not including spares, will be assigned to an aircraft and a DA Form 2410 removal must be submitted when removing or installing the AN/ALQ-144.

(4) When you prepare a new form for one that is destroyed or worn, send the old form to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (TACTS), Redstone Arsenal, Huntsville, AL 35898-5000.

(5) When all the items listed on the form have been removed and the entries lined out, reenter any current significant historical data from block 11 of the form to a new form. Send the old form to Commander, AMCOM, ATTN: AMSAM-MMC-RE-FD (TACTS), Redstone Arsenal, Huntsville, AL 35898-5000.

Note. See TM 1–1500–328–23 for mutilation of condemned aeronautical equipment before disposal.
Legend for Figure 4-1:
Preparation Instructions (by block number and title) for completing a DA Form 2408–5, Equipment Modification Record

Page of . Enter the page number and total number (black lead pencil) of pages.

1. NOMENCLATURE. Enter the item name.

2. MODEL. Enter the mission, design, and series of the aircraft.

3. AIRCRAFT SERIAL NUMBER. Enter the aircraft serial number (seven numeric digits).

4. MWO NUMBER AND DATE.

a. Enter the MWO number in the upper part of this block. The activity applying the MWO will normally complete this block. MWO’s not applied will be entered by the unit/activity that determines that MWO was not applied.

b. Enter the MWO publication date (dd mmm yy), priority for the MWO (“E” for Emergency, “U” for Urgent, or “R” for Routine) and the maintenance level responsible for application of the MWO (“O” for AVUM, “F” for AVIM or “D” for Depot) in the bottom part of this block.

5. MWO TITLE. Enter the MWO abbreviated title.

6. ORGANIZATION APPLYING MWO. Enter the UIC, or the name of the organization that applied the MWO or determined that the MWO was previously applied. If a MWO is issued but not applied, enter the date that the MWO must be applied (black lead pencil). Erase the date when the MWO is applied.

NOTE. Enter the MWO as overdue on DA Form 2408–13–1 if the MWO has not been applied by the due date.

7. NAME OR PID. The person who does the technical inspection, to certify the MWO application, will enter his or her PID in this block.

8. DATE. Enter the date (dd mmm yy) that the MWO was applied.

9. MANHOURS. Enter the actual manhours it took to apply the MWO, to the nearest tenth of an hour, including the technical inspection.
Figure 4-2. Sample of a completed DA Form 2408–5–1, Equipment Modification Record (Component)

Legend for Figure 4-2:
Preparation Instructions (by block number and title) for completing a DA Form 2408–5–1, Equipment Modification Record (Component)

Page of . Enter the page number and the total number (black lead pencil) of pages.

1. NOMENCLATURE. Enter the component/module name.

2. COMPONENT SERIAL NUMBER. Enter the component/module serial number.

3. AIRCRAFT SERIAL NUMBER. Enter the serial number of the aircraft the component/module is installed on. Use a black lead pencil.

4. MWO NUMBER AND DATE. The owning unit or higher level maintenance activity is responsible for entering all MWOs, SOF messages, ASAMs, and TBs that apply to the component/module, regardless of the maintenance level responsible for application of the MWO, SOF message, ASAM, or TB compliance.  
   a. Enter the MWO, SOF, ASAM, or TB number in the upper half of the block.
   b. In the lower half of the block, enter the date (dd mmm yy) of the MWO, SOF, ASAM, or TB; the priority for ASAM or SOF messages ("E" for Emergency, "T" for Technical, "M" for Maintenance Mandatory, or "O" for Operational), or for a MWO or TB ("E" for Emergency, "U" for Urgent, or "R" for Routine) and enter the maintenance level responsible for complying with the directive ("O" for AVUM, "F" for AVIM, and "D" for Depot).

5. MWO TITLE. Enter the MWO, SOF, ASAM, or TB abbreviated title.

6. ORGANIZATION APPLYING MWO. Enter the UIC or the name of the organization applying the directive.

7. NAME OR PID. The person who does the technical inspection, or who will verify the MWO, SOF, ASAM, or TB application, will enter his or her PID.

8. DATE. Enter the date (dd mmm yy) the directive was applied.

9. MANHOURS. Enter the actual number of manhours used to comply with the directive, including the technical inspection.
### 1. AIRCRAFT MODEL

**Helicopter**

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Organization Location</th>
<th>Date</th>
<th>Entry Number</th>
<th>PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase #3 completed at 4928.9 acft. hrs. Next phase due at 5079.9 acft. hrs.</td>
<td>A Co. 229th AHB Ft. Hood, TX</td>
<td>27 Apr 89</td>
<td>BC0172</td>
<td>BC 0172</td>
</tr>
<tr>
<td>$3 pulled early due to extensive unscheduled maintenance.</td>
<td>A Co. 229th AHB Ft. Hood, TX</td>
<td>95431-0120</td>
<td>23 Apr 89</td>
<td>C 0172</td>
</tr>
<tr>
<td>SOF MSG, One time insp of NAS1875-8-44 bolts complied with at 4929.6 acft. hrs.</td>
<td>A Co. 229th AHB Ft. Hood, TX</td>
<td>27 Apr 89</td>
<td>BC0172</td>
<td>BC 0172</td>
</tr>
<tr>
<td>During night vision goggles training mission acft. crashed inverted in a wooded area.</td>
<td>A Co. 229th AHB Ft. Hood, TX</td>
<td>01 Aug 89</td>
<td>J J 9737</td>
<td>JJ 9737</td>
</tr>
<tr>
<td>Post crash fire consumed acft.</td>
<td>A Co. 229th AHB Ft. Hood, TX</td>
<td>95431-0120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft processed to DRMD 21 Aug 99 by A Co. 229th AHB at 5076.1 acft. hrs. data</td>
<td>A Co. 229th AHB Ft. Hood, TX</td>
<td>15 Aug 89</td>
<td>J J 9737</td>
<td>JJ 9737</td>
</tr>
</tbody>
</table>

### 3. AIRCRAFT SERIAL NUMBER

Enter the aircraft serial number (seven numeric digits). When used as a DA Form 2408–16 or 2408–16–1 continuation page, enter the serial number of the component/module from DA Form 2408–16, block 4 or DA Form 2408–16–1, block 2.

### 4. REMARKS

a. Record any significant historical data about the airframe.

b. The historical data entries should include complete data on SOF messages, ASAMs, TBs, One-time Inspections for airframe items, scheduled inspections; such as, Phase or periodic, major repairs, conversions, overhauls, and total aircraft hours at completion.

c. If the aircraft was involved in an accident, provide complete details, including date (dd mmm yy), total airframe flying hours, organization, and the cause and results, if known.

d. When aircraft are removed from U.S. Army accountability, provide a close out statement verifying all
items on DA Form 2408–16 and/or 2408–16–1 are installed or lined out if they have been removed.

e. ULLS-A users must make an entry showing the date and time the conversion process to ULLS-A was completed.

5. ORGANIZATION LOCATION. Enter the name of the unit/organization, and location of the unit that inspected, repaired, or overhauled the aircraft.

6. DATE. Enter the date (dd mmm yy) the action was completed.

7. ENTRY NUMBER. Manual Record keeping system; leave this block blank. ULLS-A users; entry is automatically entered.

8. PID. The person who verifies the maintenance action was completed or makes an entry will enter his or her Personal Identifier in this block.

NOTE. Compliance of SOF messages, ASAMs, TBs, and one-time inspections on reportable components/modules will be recorded on individual component/module DA Form 2408–5–1.

Legend for Figure 4-4: Preparation Instructions (by block number and title) for completing a DA Form 2408–15–2, Aircraft Vibration Record

Page of . Enter the page number and the total number (black lead pencil) of pages.

1. AIRCRAFT MODEL. Enter the aircraft mission, design, and series.

2. NOMENCLATURE. Enter the item name.

3. AIRCRAFT SERIAL NUMBER. Enter the aircraft serial number (seven numerical digits).

4. IPS READINGS
a. **DATE.** Enter the date (dd mmm yy) when the vibration test(s) were done.

b. **AC HRS.** Enter the aircraft operating hours, in hours and tenths. Aircraft operating hours can be found on the current DA Form 2408–13, block 11, FLIGHT DATA.

c. **SHAFT.** Enter the name of each component drive shaft that the vibration tests are done on.

d. **LATERAL.** Enter the IPS reading taken for the lateral axis.

e. **LONGITUDINAL.** Enter the IPS reading taken for the longitudinal axis.

f. **VERTICAL.** Enter the IPS reading taken for the vertical axis.

g. **REASON FOR VIBRATION CHECK.** Enter the reason(s) for the vibration test/check; for example, Scheduled 25 hour vibration test, 100 hour requirement, maintenance work, or component replacement.

5. **REMARKS.** Enter the date (dd mmm yy), other significant historical data and/or actions taken to reduce vibration, PID, organization, and location.

---

**Figure 4-5A. Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Time Change Components) (Illustration #1)**
**TIMM CHANGE COMPONENTS**

<table>
<thead>
<tr>
<th>NOMENCLATURE AND WUC</th>
<th>PN AND NSN</th>
<th>COMPONENT SER NO.</th>
<th>LOCATION</th>
<th>NO PREV OH</th>
<th>NOMEN INST HRS</th>
<th>TIME SINCE OH</th>
<th>COMP INST HRS</th>
<th>CM OR REPLAC LIF</th>
<th>REPLACE- MENT DUE</th>
<th>EXP HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Axial 06H23</td>
<td>70361-03005-106</td>
<td>00212</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swashplate Assy 05A03A</td>
<td>70104-08000-049</td>
<td>A107</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11000</td>
<td>11000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/R Gearbox Assy 06001</td>
<td>1615-01-210-4572</td>
<td>1659</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5100</td>
<td>5100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O/R T/R Retent Plug 06G018</td>
<td>70102-11101-042</td>
<td>A275</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13000</td>
<td>13000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/R Spindle Assy 05A011</td>
<td>1615-01-370-4918</td>
<td>01592</td>
<td>RC</td>
<td>1350</td>
<td>RC</td>
<td>589</td>
<td>2500</td>
<td>3261</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SIGNIFICANT HISTORICAL DATA**

24 Feb 94 Retirement life of main rotor blades part number 70150-09100-043 reduced to 9600 hours per UH-50-94-ASAM-07. RB9553, 63d TAMC, APO NY 09182.

03 Mar 94 All current entries as of 03 Mar 94 were transposed from a mutilated form. RB9553, 63d TAMC, APO NY 09182.

---

Figure 4-5B. Sample of a completed DA Form 2408-16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Time Change Components) (Illustration #2)
**Figure 4-5C. Sample of a completed DA Form 2408-16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Condition Items) (Illustration #3)**

<table>
<thead>
<tr>
<th>Nomenclature and WUC</th>
<th>PIN and NSN</th>
<th>Component Ser No. Location</th>
<th>No. Prev Oh</th>
<th>Nomen Inst Hrs</th>
<th>Time Since Oh</th>
<th>Comp Inst Hrs</th>
<th>Oh or Replac Life</th>
<th>Replacement Due (ACTF HRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/H Input Module</td>
<td>70351-08001-046</td>
<td>A264-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06E</td>
<td>1615-01-230-6218</td>
<td>03739</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>R/H Input Module</td>
<td>70351-08001-046</td>
<td>A264-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06E</td>
<td>1615-01-230-6218</td>
<td>03738</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>L/H Access Module</td>
<td>70351-08080-043</td>
<td>A258-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06A11</td>
<td>1615-01-078-5718</td>
<td>03638</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>R/H Access Module</td>
<td>70351-08080-043</td>
<td>A258-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06A11</td>
<td>1615-01-078-5718</td>
<td>03637</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>Intermediate C/B</td>
<td>70357-06300-042</td>
<td>A005-</td>
<td>546</td>
<td>0</td>
<td>987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06F</td>
<td>1615-01-074-5152</td>
<td>01861</td>
<td>CC</td>
<td>0</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>Driveshaft L/H</td>
<td>70361-08004-043</td>
<td>A275-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06H04</td>
<td>2835-01-123-7648</td>
<td>04136</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>Driveshaft R/H</td>
<td>70361-08004-043</td>
<td>A275-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06H04</td>
<td>2835-01-123-7648</td>
<td>03668</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>Driveshaft Sec I</td>
<td>70361-05001-044</td>
<td>A271-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06H06</td>
<td>1615-01-109-7190</td>
<td>01380</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>Driveshaft Sec II</td>
<td>70361-03009-047</td>
<td>A270-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06H08</td>
<td>1615-01-158-9517</td>
<td>01865</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
</tr>
<tr>
<td>Driveshaft Sec III</td>
<td>70361-05001-032</td>
<td>A272-</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
<tr>
<td>06H09</td>
<td>1NSN</td>
<td>PEND</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CC</td>
<td>COND</td>
<td>COND</td>
</tr>
</tbody>
</table>
Figure 4-5D. Sample of a completed DA Form 2408–16, Aircraft Component Historical Record (To record historical data on selected aircraft components, modules) (Major Component Form) (Illustration #4)
**Legend for Figure 4-5E:**

**Preparation Instructions (by block number and title) for completing a DA Form 2408–16 to record historical data on selected aircraft components**

NOTE. T-700 series gas turbine engine, major components, and subcomponents will not be recorded on the DA Form 2408–16. They are listed on DA Form 2408–16–1, since they are removed and replaced at operating hours on the engine, major component, or subcomponents. This form is used only for selected reportable components that are removed and replaced at specific aircraft flying hours.

**Page of**. Enter the page number and the total number (black lead pencil) of pages.

1. **NOMENCLATURE.** Enter the item (aircraft or component) name.

2. **NSN.** Enter the aircraft or component National Stock Number. If the NSN changes because of MWO application, line out the old number and enter the new number.

3. **PART NUMBER OR MODEL.** When the item, in block 1, is an aircraft or training device/simulator enter the proper Mission Design Series. When the item is a component enter the proper part number. If for any reason the MDS or part number changes, line out the old number and enter the new one.

4. **SERIAL NUMBER.** Enter the aircraft or component serial number.

5. **WUC.** Enter the work unit code for the major component listed in block 1. When block 1 contains an aircraft, leave blank. WUC’s can be found in TB 1–1500–341–01.

6a. **NOMENCLATURE AND WUC.**

   a. Enter on the top line the major component or sub-component name, listed in TB 1–1500–341–01, for your aircraft or major component in block 1. Make sure that you include each of the items listed in TB 1–1500–341–01.

   b. Enter the proper Work Unit Code on the bottom line. The WUC can be found in TB 1–1500–341–01, for each component/module.

6b. **P/N AND NSN.**
a. Enter on the top line the part number for the item listed in block 6a.

b. Enter on the bottom line the national stock number for the item.

6c. COMPONENT SER NO. LOCATION. Enter the serial number and/or the location for the item listed in block 6a. Enter the location of the item if no serial number is assigned. The location may be entered along with the serial number. Enter the software version for LRUs/black boxes that have software installed in the lower half. Enter the pitch housing weight for the AH-64 main rotor head assembly in the lower half.

6d. NO PREV O/H. If the item, in block 6a, is a TC item enter the number of overhauls the component/module has had from the DA Form 2410, Copy 3. If the TC item has never been overhauled enter "0." If the item is an RC or CC item, enter "RC" or "CC" whichever applies even though the DA Form 2410 may show an overhaul. These codes can be found in TB 1–1500–341–01.

6e. NOMEN INST HRS. Enter the usage time since new, round to the nearest hour, for the item in block 1, when the item in block 6a is installed.

   a. If the item in block 1 is an aircraft, get this figure from the current DA Form 2408–13, block 11, FLIGHT DATA, AIRCRAFT HOURS, CURRENT.

   b. If the item, in block 1, is an installed component/module, get this figure from the DA Form 2410.

   c. If the item, in block 1, is an installed component/module, go to the aircraft DA Form 2408–16 and locate the line for this component/module. Subtract the entry on the aircraft DA Form 2408–16, block 6e, from the aircraft hours shown on the current DA Form 2408–13, block 11. Add the results to the entry on the aircraft DA Form 2408–16, block 6h. Enter the sum, in this block, on the major subcomponent DA Form 2408–16.

6f. NOMEN RMVL HRS. Enter the usage time since new, round to the nearest hour, for the item listed in block 1, when the item in block 6a is removed.

   a. If the item, in block 1, is an aircraft, get this figure from the current DA Form 2408–13, block 11.

   b. If the item, in block 1, is an installed component/module, get this figure from the DA Form 2410.

   c. If the item, in block 1, is an installed component/module, go to the aircraft DA Form 2408–16 and locate the line for this component/module. Subtract the entry on the aircraft DA Form 2408–16, block 6e, from the aircraft hours shown on the current DA Form 2408–13, block 11. Add the result to the entry on the aircraft DA Form 2408–16, block 6h. Enter the sum in this block on the major subcomponent DA Form 2408–16 for the subcomponent being removed.

6g. TIME SINCE O/H. If the item is a TC item enter the number of operating hours, since the item, in block 6a, was last overhauled. Take this figure from the DA Form 2410, Copy 3. If the TC item is new enter "0." If the item is an RC or CC item, enter "RC" or "CC," whichever applies.

6h. COMP INST HRS. Enter "0," or the usage time since new, rounded to the nearest hour, for the item in block 6a. Get this figure from the DA Form 2410, Copy 3.

6i. COMP RMVL HRS. When a component/module is removed, enter the total accumulated operating hours. This is obtained by subtracting block 6e from 6f, and adding 6h.

6j. O/H OR REPLAC LIFE. For CC components/modules enter "COND." For TC and RC components/modules enter the maximum allowable operating time (MAOT) from the applicable -23 TM. When the TBO or "time to replacement" is changed, line out the old time and enter the new time. If the authority for this change was other than a change to the -23 TM, enter the authority in block 7.

6k. REPLACEMENT DUE (ACFT HRS). Enter the aircraft operating hours that the component/module or part must be replaced by. Complete this column as follows:

   a. On a component/module form only, the entry will be in black lead pencil.

   b. For Condition Change DA Form 2408–16 and other Condition Change subcomponents entered on DA Form 2408–16 enter "COND."

   c. For the Aircraft Time Change DA Form 2408–16 the following applies:

      (1) If the item, in block 6a, is a RC item or a TC item that has never been overhauled (block 6d is RC or 0), subtract block 6h from 6j, and add to 6e.

      (2) If the item, in block 6a, is a TC item that has been previously overhauled (block 6d has 1, 2, 3, or so on), subtract block 6g from 6j, and add to 6e.

   d. For the major component/module DA Form 2408–16 the following applies:

      (1) Depot level maintenance activities will leave this block blank. This block will be filled in when the major component/module is installed on the next higher assembly and listed on the next higher assembly Time Change or Condition Change DA Form 2408–16.

      (2) If the subcomponent listed in block 6a is a RC item or a TC item that has never been overhauled (block 6d is RC or 0), subtract block 6h from 6j and add to block 6e; then go to the aircraft DA Form 2408–16 and locate the major component and add block 6e from the aircraft form to the total you got from the component form and subtract block 6h of the aircraft form and enter this total in block 6k on the component form. The formula looks like this:

         (5) If the subcomponent listed in block 6a is a TC item that reflects an overhaul number (1, 2, or 3) in block 6d, subtract block 6g from 6j and add to block 6e; then go to
the aircraft DA Form 2408–16 and locate the major component and add block 6e from the aircraft form to the total from the component form and subtract block 6h of the aircraft form and enter this total in block 6k on the component form. The formula looks like this:

\[(\text{component form}) \ 6j - 6g + 6e + (\text{aircraft form}) \ 6e - 6h = 6k \text{ on the component form.}\]

e. When an item reaches the MAOT time or the "replacement due time" and an extension is granted, or the time is officially changed by the NMP, line out the original entry in this column and enter the new time.

NOTE. Some components may be listed as TBO and RC in the TM -23 maintenance manual. When this situation occurs, only make one entry for the component on the DA Form 2408–16. Draw a horizontal line through the center of blocks 6j and 6k. Enter the TBO interval in the top portion and the RC interval in the bottom portion of block 6j. Enter the TBO replacement due time in the top portion and the RC replacement due time in the bottom portion of block 6k. ULLS-A and LAS users will have two entries for this situation, one entry for the TBO and another entry for RC time.

7. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data on aircraft components/modules and parts. Before you enter the data, enter the date (dd mmm yy) of your entry. After you enter the historical data, enter your PID, organization, and location. If more space is needed, use a DA Form 2408–15 as a continuation sheet. Print "DA Form 2408–16 Continuation" in the top margin of the form and complete the form heading with the aircraft or component information. The following are examples of significant historical data: Crash damage, contamination, saltwater immersion, and HSF counts on T703 engines. For components that are removed at specific operating hours for rework or other maintenance actions, such as, "rotor head components removed at 1200 hrs. for rework (turned 180 degrees) and reinstalled" will be entered in this block.
### Figure 4-6A. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. T700 series engine showing major modules and components. (Illustration #1)

<table>
<thead>
<tr>
<th>LINE</th>
<th>LCF - 1</th>
<th>LCF - 2</th>
<th>TIME/TEMP INDEX</th>
<th>OPERATING HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9 0 1</td>
<td>5 1 2 7</td>
<td>9 7 2 9</td>
<td>1 6 4 1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>9 7 2 9</td>
<td>1 6 4 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL COMPONENT COUNTS</td>
<td></td>
</tr>
</tbody>
</table>

7. HISTORY RECORDER S/N

CA001239

For use of this form, see DA PAM 738-751; the proponent agency is DCSLOG.
<table>
<thead>
<tr>
<th>8. NOMENCLATURE</th>
<th>9. PART NUMBER</th>
<th>10. SERIAL NUMBER</th>
<th>11. OH OR REPLACEMENT LIFE</th>
<th>12. HISTORY COUNTS AT LAST DEPOT REPL</th>
<th>13. REPLACEMENT DUE (Hist recr Hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Section Mod.</td>
<td>6035T02G01</td>
<td>GEC007702</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>Combustion Liner</td>
<td>6039TS8G02</td>
<td>GGMAD595</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>Matched Rotor/Stator</td>
<td>6055T20G03</td>
<td>MRS40623</td>
<td>COND</td>
<td>525 2365 4675 802</td>
<td>COND</td>
</tr>
<tr>
<td>Power Turbine Mod.</td>
<td>6038T61G01</td>
<td>GE-L-007702</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>Accessory Module</td>
<td>6035T01G01</td>
<td>GE-D-007702</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>Particle Sep Blower</td>
<td>6034T62P15</td>
<td>SUPJ7286</td>
<td>1500</td>
<td>1485 0 2985</td>
<td>0</td>
</tr>
<tr>
<td>Fuel Control</td>
<td>5074T79G07</td>
<td>UDA96534</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>Press Overspeed</td>
<td>4076T64G01</td>
<td>APM149RS</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>ECU</td>
<td>4046T29G13</td>
<td>CAO00443</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>History Recorder</td>
<td>4046T26G03</td>
<td>CAO01239</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
<tr>
<td>Oil Cooler</td>
<td>4046T25G03</td>
<td>UDC04035</td>
<td>COND</td>
<td>0 0 0 0 0 0</td>
<td>COND</td>
</tr>
</tbody>
</table>

14. SIGNIFICANT HISTORICAL DATA

15Jul 93 Particle Sep Blower, SUPJ7286, installed with TSN of 0 0 0/0 0 TSO, A. Waldeck, 63d TAMC, APO AE 09140.


REVERSE OF DA FORM 2408-16-1, OCT 91

* U.S. GOVERNMENT PRINTING OFFICE: 1993 342-027/80559

Figure 4-6B. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. T700 series engine showing major modules and components. (Illustration #2)
Figure 4-6C. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. T700 series engine showing major modules and components. (Illustration #3)

Legend for Figure 4-6C:
Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1 for an engine showing major modules/components

Page of . Enter page number and total number (black lead pencil) of pages.

1. MODEL. Enter the engine model.
2. ENG S/N. Enter the engine serial number.
3. NOMENCLATURE. Enter “Engine.”
4. P/N. Enter the manufacturer’s part number.
5. S/N. Enter the aircraft serial number that the engine is installed on (black lead pencil). If the engine is uninstalled, leave blank.

6. HISTORICAL COUNTS ON COMPONENT/MODULE.

LINE 1+ — PREVIOUS COUNTS OF COMPONENT/MODULE (New engine will have counts from test cell time or from last completed block 6, line 5=.)

a. LCF-1. Enter the total cumulative LCF-1 counts for the engine.

b. LCF-2. Enter the total cumulative LCF-2 counts for the engine.

c. TIME/TEMP INDEX. Enter the total cumulative Time/Temp Index (T/TI) counts for the engine.

d. OPERATING HOURS. Enter the total cumulative operating hours for the engine.

LINE 2- — READING AT INSTALLATION OF MODULE/RECORDER. Enter LCF-1, LCF-2, T/TI, and Operating
Hours readings on the history recorder when Line 1+ is completed.

Lines 3, 4= and 5= These lines will be completed if the history recorder is replaced.

7. HISTORY RECORDER S/N. Enter the history recorder serial number.

NOTE. When two or more pages are needed to enter the modules/components on the reverse side of the form, no entries are required in block 6 of the additional pages unless the front side of page 1 is filled.

BACKSIDE.

8. NOMENCLATURE. Enter the name of each replaceable module/component listed in TB 1–1500–341–01.

9. PART NUMBER. Enter the manufacturer’s part number of each module/component.

10. SERIAL NUMBER. Enter the serial number of each module/component.

11. O/H OR REPLACEMENT LIFE.

a. If the item, in block 8, has an established MAOT for overhaul, rebuild, or retirement enter the MAOT in this block.

b. If the item, in block 8, is a CC item enter "COND" in this block.

c. When the TBO or time to replacement is changed, line out the old time and enter the new time. If the authority for this change was other than a change to the -23 TM, enter the authority in block 14.

12. HISTORICAL COUNTS AT LAST DEPOT REPLACEMENT. The purpose of these blocks is to record what the total cumulative counts and hours were on the modules/components when they were installed on the engine and the total cumulative counts and hours on the engine at the time of module/component installation. The blocks will be split in half to accommodate two entries in each block. One entry in the top half of the block and one entry in the bottom half of the block. To determine the total cumulative counts and hours on the engine, read the engine history recorder to obtain the current reading. Make sure that the history recorder serial number matches the history recorder serial number entered in block 7 of the engine DA Form 2408–16–1. Subtract the entry in block 6, line 2 of the engine DA Form 2408–16–1 from the history recorder reading. Add these counts and hours to the entry in block 6, line 1 of the engine DA Form 2408–16–1. This is the total cumulative counts and hours on the engine. Obtain the total cumulative counts and hours of the module/component being installed from block 13 of the DA Form 2410 shipped with the module/component.

12a. Enter the total cumulative LCF-1 counts for the engine, at the time of module/component installation, in the top half of the block. Enter the total cumulative LCF-1 counts for the module/component being installed in the bottom half of the block.

12b. Enter the total cumulative LCF-2 counts for the engine, at the time of module/component installation, in the top half of the block. Enter the total cumulative LCF-2 counts for the module/component being installed in the bottom half of the block.

12c. Enter the total cumulative T/TI counts for the engine, at the time of module/component installation, in the top half of the block. Enter the total cumulative T/TI counts for the module/component being installed in the bottom half of the block.

12d. Enter the total cumulative operating hours for the engine, at the time of module/component installation, in the top half of the block. Enter the total cumulative operating hours for the module/component being installed in the bottom half of the block. If the item is a TC item and has been previously overhauled enter the time since overhaul. If the item is a TC item and never overhauled, enter the time since new.

NOTE. When this form is prepared for the engine, blocks 12a (LCF-1), 12b (LCF-2), and 12c (T/TI) will only be completed for the history recorder, cold section module, power turbine module and matched rotor/stator (GG turbine rotor assy). Blocks 12a, 12b and 12c will be left blank for all other modules/components entered on the engine DA Form 2408–16–1.

13. REPLACEMENT DUE (Hist rcdr hr). If the module/component is a TC or RC item the replacement time must be calculated. The replacement due time will be expressed in history recorder hours.

a. Calculate the replacement due for a RC item as follows:

(1) Read the engine history recorder at the time of module/component installation.

(2) Subtract the total cumulative hours in the top half of block 12d from the entry in the most current block 6d, line 1. Add to the total cumulative hours in the bottom half of block 12d and subtract from the MAOT in block 11. Add this amount to the entry in block 6d, line 2. Enter this figure in block 13.

b. Calculate the replacement due for a TC item as follows:

(1) Read the engine history recorder at the time of module/component installation.

(2) If the TC item has never been overhauled, subtract the total cumulative module/component hours in the bottom half of block 12d from the assigned retirement life entered in block 11. Add the results to the current history recorder hours. This figure will be the history recorder hours that the module/component is due replacement.

(3) If the TC item has been previously overhauled, subtract the hours since overhaul from the assigned retirement life entered in block 11. Add the results to the current history recorder hours. This figure will be the history recorder hours that the module/component is due replacement.
(4) Enter the time since new, number of prior overhauls, and time since overhaul for each installed TC item in block 14 so the information will be available when the TC item is removed. This information is necessary for completion of DA Form 2410.

c. If the item in block 8 is a condition component enter "COND" in this block.

14. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data on engines, modules/components, and parts. Before you enter the data, enter the date (dd mmm yy) of the entry. After you enter the historical data, enter your PID, organization, and location. If you need more space, use a DA Form 2408–15 as a continuation sheet. Print "DA Form 2408–16–1 Continuation" in the top margin of the form and complete the heading with the engine or module information. The following are examples of historical data: Aircraft serial number that the engine is installed on or removed from, aircraft hours at installation or removal, total cumulative counts and hours when an engine is installed or removed, crash damage, contamination, hot starts, over torques, over speeds, salt water immersion, and/or overhaul/major repair.

NOTE. When a module/component is removed from the engine, line out the entry for the old module/component on the engine DA Form 2408–16–1. Enter the data for the replacement module/component on the next open line.

<table>
<thead>
<tr>
<th>LINE</th>
<th>LCF - 1</th>
<th>LCF - 2</th>
<th>TIME/TEMP INDEX</th>
<th>OPERATING HOURS</th>
<th>HISTORY RECORDER S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-7A. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. New T700 series engines, components or modules for spares. (Illustration #1)
## DA Form 2408–16–1, History Recorder Component Module Record

<table>
<thead>
<tr>
<th>NO.</th>
<th>NOMENCLATURE</th>
<th>PART NUMBER</th>
<th>SERIAL NUMBER</th>
<th>OH OR REPLACEMENT LIFE</th>
<th>HISTORY COUNTS AT LAST DEPOT REPLACEMENT DUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LCF-1</td>
<td>LCF-2</td>
</tr>
<tr>
<td>#1</td>
<td>Ball Bearing</td>
<td>5034T07P03</td>
<td>MAOV878</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#2</td>
<td>Ball Bearing</td>
<td>5035T71P01</td>
<td>MDAM0575</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### Legend for Figure 4-7B:

- **Preparation Instructions (by block number and title)** for completing a DA Form 2408–16–1 on a new module/component for spares.

1. **MODEL.** Enter the module/component model.
2. **ENG S/N.** Enter engine serial number (black lead pencil) when installed. For items not installed on an engine, leave blank.
3. **NOMENCLATURE.** Enter the name of the module/component.
4. **P/N.** Enter the manufacturer’s part number.
5. **S/N.** Enter the module/component serial number.
6. **HISTORICAL COUNTS ON COMPONENT/MODULE.**
   - **LINE 1+ — PREVIOUS COUNTS OF COMPONENT/MODULE.** Enter the total cumulative LCF-1, LCF-2, T/TI, and Operating Hours for the module/component after completion of test run.
   - **LINE 2- — READING AT INSTALLATION OF MODULE/RECORER.** Leave blank. History recorder readings will be entered when item is installed on an engine.
   - **LINES 3, 4=, and 5=.** These lines will be completed when the history recorder is replaced.
7. **HISTORY RECORDER S/N.** Leave blank. The history...
recorder serial number will be entered when the module/component is installed on an engine.

NOTE. When two or more pages are needed to enter the subcomponents on the reverse side of the forms, no entries are required in block 6 of additional pages unless the front side of page 1 is filled.

BACKSIDE.

8. NOMENCLATURE. Enter the name of each replaceable subcomponent.

9. PART NUMBER. Enter the manufacturer’s part number of each subcomponent.

10. SERIAL NUMBER. Enter the serial number of each subcomponent.

11. O/H OR REPLACEMENT LIFE.

a. If the item in block 8 has an established MAOT for overhaul, rebuild, or retirement enter the MAOT in this block.

b. If the item in block 8 is a condition change component enter “COND” in this block.

12. HISTORY COUNTS AT LAST DEPOT REPLACEMENT.

a. The purpose of these blocks is to record the total cumulative counts and hours on the subcomponents when they were installed on the module/component and the total cumulative counts and hours on the module/component at the time of subcomponent installation.

b. The block will be split in half to accommodate two entries. One entry in the top half of the block and one entry in the bottom half of the block. The total cumulative counts for the module/component in block 3, at the time of subcomponent installation, will be entered in the top portion of this block. The total cumulative counts for each subcomponent, at the time of installation, will be entered in the bottom portion of the block.

13. REPLACEMENT DUE (Hist rcdr hr).

a. If the subcomponent has an established MAOT, leave blank. The replacement due will be calculated when the module or component is installed on an engine.

b. If the subcomponent is a condition change component enter “COND” in this block.

14. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data on modules/components, and parts. Enter the date (dd mmm yy) before you enter the data. After you enter the historical data, enter your name, organization, and location. If you need more space, use a DA Form 2408–15 as a continuation sheet. Print “DA Form 2408–16–1 Continuation” in the top margin of the form and complete the heading with the module/component information. The following are examples of significant historical data: Crash damage, contamination, hot starts, over torques, over speeds, salt water immersion, and overhaul or major repair.
Figure 4-8A. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Removal of a module from a T700 series engine. (Illustration #1)
Figure 4-8B. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Installation of a module on a T700 series engine. (Illustration #2)
Figure 4-8C. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Installation of a module on a T700 series engine. (Illustration #3)

Legend for Figure 4-8C:
Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1, removal or installation of a module/component having a separate DA Form 2408–16–1.

Page of . Enter page number and total number (black lead pencil) of pages.

NOTE. Follow these procedures when installing a module/component with a separate DA Form 2408–16–1. Enter the module/component listed in block 3 of the separate DA Form 2408–16–1 on the correct next higher assembly DA Form 2408–16–1. Make the following entries on the separate module or component DA Form 2408–16–1.

Blocks 1, 3, 4, 5, and 6 (Line 1+). Already completed on the form when a module/component is received.

2. ENG S/N. When the next higher assembly of the module/component is the engine, enter the engine serial number (black lead pencil).

6. HISTORICAL COUNTS ON COMPONENT/MODULE.

a. LINE 2—READING AT INSTALLATION OF MODULE/RECORDER. Enter the current LCF-1, LCF-2, T/TI, and Operating Hours on the history recorder when installing a module/component on an engine.

NOTE. Do not complete Lines 3, 4=, and 5= for installation.

b. LINE 3—READING AT REMOVAL OF MODULE/RECORDER. Enter the current LCF-1, LCF-2, T/TI, and Operating Hours on the history recorder when removing a module/component from an engine.

c. LINE 4=—LINE 3 MINUS LINE 2. Subtract the readings on line 2— from readings on line 3 to get the operating hours since last installation. Transfer the
hours to DA Form 2410, Copy 1, block 7, prepared for the module/component.

d. LINE 5= — TOTAL COMPONENT COUNTS. Add line 4= to line 1+ for total cumulative counts. Transfer the counts to DA Form 2410, Copy 1, block 13, prepared for the module/component. Transfer total cumulative operating hours from block 6, line 5=, Operating Hours, to the DA Form 2410, Copy 1, block 8.

7. HISTORY RECORDER S/N. Enter the history recorder serial number when installing the module/component on an engine.

NOTE. When two or more pages are needed to enter the modules/components on the reverse side of the forms, no entries are required in block 6 of the additional pages unless the front side of page 1 is filled.

BACKSIDE

Blocks 8 through 12. These blocks should be filled in before module/component installation. LCF-1, LCF-2, T/TI and OP Hours are required for every subcomponent entered on a module/component DA Form 2408–16–1. When the TBO or time to replacement is changed, line out the old time and enter the new time. If the authority for this change was other than a change to the -23 TM, enter the authority in block 14.

13. REPLACEMENT DUE (Hist rcdr hr). If the module/component is a TC or RC item the replacement time must be calculated. The replacement due time will be expressed in history recorder hours.

a. Calculate the replacement due for a RC item as follows:

(1) Read the engine history recorder at the time of module/component installation.

(2) Subtract the total cumulative hours in the top half of block 12d from the entry in the most current block 6d, line 1. Add to the bottom half of block 12d and subtract from the MAOT in block 11. Add this amount to the entry in block 6d, line 2. Enter this figure in block 13.

b. Calculate the replacement due for a TC item as follows:

(1) Read the engine history recorder at the time of module/component installation.

(2) If the TC item has never been overhauled, subtract the total cumulative subcomponent hours in the bottom half of block 12d from the assigned retirement life entered in block 11. Add this amount to the current history recorder hours. This figure will be the history recorder hours that the subcomponent is due replacement.

(3) If the TC has been previously overhauled, subtract the hours since overhaul from the assigned retirement life entered in block 11. Add this amount to the current history recorder hours. This figure will be the history recorder hours that the subcomponent is due replacement.

(4) Enter the prior overhauls and time since overhaul for each installed TC item in block 14 so the information will be available when the TC item is removed. This information is necessary for completion of the DA Form 2410.

14. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data on modules/components, and parts. Enter the date (dd mmm yy) before you enter the data. After you enter the historical data, enter your name, organization, and location. If you need more space, use a DA Form 2408–15 as a continuation sheet. Print "DA Form 2408–16–1 Continuation" in the top margin of the form and complete the heading with the engine or module information. The following are examples of significant historical data: Crash damage, contamination, hot starts, over torques, over speeds, salt water immersion, and overhaul or major repair.

NOTE. For removed module/component attach the DA Form 2408–16–1 along with the DA Form 2410 to the item for shipment to higher level maintenance activity. Entries are also required on the engine DA Form 2408–16–1 when modules/components are removed or installed on the engine.
Figure 4-9A. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair of a T700 series engine module. (Illustration #1, Front)
Figure 4-9B. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair of a T700 series engine module. (Illustration #2, Reverse)

Legend for Figure 4-9B:
Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1, Depot Repair

NOTE. When an unserviceable engine is received at depot level, read the history recorder, enter this reading on block 6, line 3 and complete lines 4= and 5= of the engine DA Form 2408–16–1. Complete block 6 for each module/component having a separate DA Form 2408–16–1.

Blocks 1, 3, 4, and 5. Should be filled in. If not, enter the required information.

2. ENG S/N. When the form is for a module/component leave blank until the module/component is installed on an engine or module/component. When the form is for an engine enter the engine serial number

6. HISTORICAL COUNTS ON COMPONENT/MODULE.

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>- PREVIOUS COUNTS OF COMPONENT/MODULE</td>
<td>a. Enter the total cumulative counts from the last completed block 6, line 5= to the next open block 6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. If the module/component has been operated on a slave engine to ensure serviceability after repair, the total cumulative counts/hours must be updated. (1) Calculate the LCF-1, LCF-2, Time/Temp Index, and Operating Hours accumulated by the engine or module/component while operating on the slave engine. (2) Add these counts/hours to the total cumulative counts entered on line 1+. (3) Line out the existing figures in line 1+ and enter the updated counts/hours above the old figure.</td>
</tr>
<tr>
<td>2-</td>
<td>- READING AT INSTALLATION OF MODULE/RECORDER</td>
<td>When this form is prepared for a module/</td>
</tr>
</tbody>
</table>
component on the next open line.

7. HISTORY RECORDER S/N. When this form is prepared for a module/component leave blank until the component is installed on an engine. For an engine enter the history recorder serial number.

NOTE. When two or more pages are needed to enter the modules/components on the reverse side of the forms, no entries are required in block 6 of the addition pages unless the front side of page 1 is filled.

BACKSIDE.

NOTE. For completion of the backside of the engine DA Form 2408–16–1 refer to the instructions for figure 4–6. Complete the reverse side of a separate module/component DA Form 2408–16–1 as follows.

8. NOMENCLATURE. Enter the name of each installed subcomponent of the module/component on the next open line.

9. PART NUMBER. Enter the manufacturer’s part number of each installed subcomponent of the module/component on the next open line.

10. SERIAL NUMBER. Enter the serial number of each installed subcomponent of the module/component on the next open line.

11. O/H OR REPLACEMENT LIFE.

a. If the item in block 8 has an established MAOT, enter the MAOT in this block.

b. If the item in block 8 is a condition change module/component enter "COND" in this block.

c. When the TBO or "time to replacement" is changed, line out the old time and enter the new time. If the authority for this change was other than a change to the -23 TM, enter the authority in block 14.

12. HISTORY COUNTS AT LAST DEPOT REPLACE-

a. Removing a subcomponent from a module/component with a separate DA Form 2408–16–1. Calculate the total cumulative counts and hours for each subcomponent removed by subtracting the total cumulative counts and hours entered in the top half of blocks 12a through 12d from the counts and hours entered in block 6, line 5=. Obtain the total cumulative counts for the module/component DA Form 2408–16–1, block 6, line 5=. Obtain the total cumulative counts and hours for each subcomponent being installed from the subcomponent DA Form 2410, block 13.

b. Installing a subcomponent on a module/component with a separate DA Form 2408–16–1. The purpose of these blocks is to record what the total cumulative counts and hours were on the subcomponents when they were installed on the module/component and the total cumulative counts and hours on the module/component at the time of subcomponent installation. The blocks will be split in half to accommodate two entries in each block. One entry in the top half of the block and one entry in the bottom half of the block. Obtain the total cumulative counts for the module/component from the module/component DA Form 2408–16–1, block 6, line 5=. Obtain the total cumulative counts and hours for each subcomponent being installed from the subcomponent DA Form 2410, block 13.

12a. Enter the total cumulative LCF-1 counts for the module/component, at the time of subcomponent installation, in the top half of the block. Enter the total cumulative LCF-1 counts for the subcomponent being installed in the bottom half of the block.

12b. Enter the total cumulative LCF-2 counts for the module/component, at the time of subcomponent installation, in the top half of the block. Enter the total cumulative LCF-2 counts for the subcomponent being installed in the bottom half of the block.

12c. Enter the total cumulative T/TI counts for the module/component, at the time of subcomponent installation, in the top half of the block. Enter the total cumulative T/TI counts for the subcomponent being installed in the bottom half of the block.

12d. Enter the total cumulative operating hours for the module/component, at the time of subcomponent installation, in the top half of the block. Enter the total cumulative operating hours for the subcomponent being installed in the bottom half of the block.

13. REPLACEMENT DUE (Hist rcdr hr).

a. If the form is completed for a module/component with a separate DA Form 2408–16–1 enter "COND" for each CC item listed. For RC and TC items, leave block 13 blank until the module/component is installed on an engine.

b. When the module/component is installed on an engine enter the engine history recorder readings on the module/component DA Form 2408–16–1, block 6, line 2-. If the subcomponent is a TC or RC item the replacement time must be calculated. The replacement due time will be expressed in history recorder hours.

c. Calculate the replacement due for a RC item by subtracting the hours in the top half of block 12d from the entry in the most current block 6d, line 1. Add to the total cumulative hours in the bottom half of block 12d and subtract from the MAOT in block 11. Add this amount to the entry in block 6d, line 2. Enter this figure in block 13.

d. Calculate the replacement due for a TC item as follows:

(1) If the TC item has never been overhauled, subtract the total subcomponent hours in the bottom half of block 12d from the assigned retirement life entered in block 11. Add this amount to the entry in block 6d, line 2 on the front side of the form. This figure will be the history recorder hours that the module/component is due replacement.
(2) If the TC item has been previously overhauled, subtract the hours since overhaul from the assigned retirement life entered in block 11. Add this amount to the entry in block 6d, line 2- on the front side of the form. This figure will be the history recorder hours that the subcomponent is due replacement.

(3) Enter the prior overhauls and time since overhaul for each installed TC item in block 14 so the information will be available when the TC item is removed. This information is necessary for completion of DA Form 2410.

### 14. SIGNIFICANT HISTORICAL DATA

Enter any significant historical data on engines, modules/components and parts. Before you enter the data, enter the date of your entry. After you enter the historical data, enter you name, organization, and location. If you need more space, use a DA Form 2408–15 as a continuation sheet. Print "DA Form 2408–16–1 Continuation" in the top margin of the form and complete the heading with the engine or component information. The following are examples of significant historical data: Engine installation and removal from an aircraft, total cumulative counts when an engine is removed or installed, crash damage, contamination, hot starts, over torques, over speeds, salt water immersion, and overhaul/major repair data.

![Figure 4-10A](image-url)

**Figure 4-10A.** Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Replacement of a T700 series engine history recorder. (Illustration #1)
Figure 4-10B. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Replacement of a T700 series engine history recorder. (Illustration #2)

Legend for Figure 4-10B:
Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1, replacement of a history recorder

NOTE. When an engine history recorder is replaced, all the DA Forms 2408–16–1 (engine and major components) must have block 6 completed for the old history recorder and in the next open block 6, line 1+ (previous counts of module/component, get from line 5= of the previous block 6) and line 2- (history recorder readings at time of installation) must be completed for the new history recorder. Add another DA Form 2408–16–1, if both block 6 are completely filled on the engine, module/component form. Be sure the serial number of the history recorder you are removing matches the serial number on the DA Form(s) 2408–16–1. Check lines 2-, 3, 4=, and 5=, for discrepancies. If any discrepancies are found, contact the 2410 Hot line: AVUM, AVIM, and AVCRADs call DSN 897–2410 or Commercial (256) 313–2410, Contractors call DSN 746–2851 or Commercial (256) 876–2851, and CCAD personnel call DSN 861–4544 or Commercial (512) 939–4544. Do not continue with the paperwork until all discrepancies are resolved.

Blocks 1, 2, 3, 4, and 5. Make sure that the engine model, serial number, name, manufacturer's part number, and component serial number are correctly entered.

6. HISTORICAL COUNTS ON COMPONENT/MODULE.

LINE 3 — READING AT REMOVAL OF MODULE/RECORDER. Enter the recorder reading at time of history recorder removal. If the recorder is inoperative, every effort should be made to establish the correct data. If the engine data can not be reconstructed, contact the AMCOM DA Form 2410 Hot line.
**LINE 4= — LINE 3 MINUS LINE 2.** Subtract Line 2- from Line 3.

**LINE 5= — TOTAL COMPONENT COUNTS.** Add Line 1+ to Line 4=. Enter total on Line 1+ in the next open block 6. If the total cumulative counts were calculated due to history recorder failure, make an entry in block 14 and the REMARKS block of DA Form 2410, copies 1 and 2, prepared for the failed history recorder stating that the total cumulative counts were calculated due to history recorder failure.

**NEW BLOCK 6.**

**LINE 1+ — PREVIOUS COUNTS OF COMPONENT/MODULE.** Reenter the total from the prior block 6, line 5=.

**LINE 2- — READING AT INSTALLATION OF MODULE/RECORDER.** Enter the new history recorder readings at the time of installation.

**7. HISTORY RECORDER S/N.** Enter the serial number of the new history recorder you are installing.

**NOTE.** When a history recorder is replaced the entries on the DA Forms 2408–16–1, block 13, must be recalculated for RC and TC major components and subcomponents. Failure to recalculate the replacement due time may result in exceeding the retirement life of these items.

---

**Figure 4-11A.** Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair or overhaul of a H-60 series aircraft APU. (Illustration #1, Front)
Figure 4-11B. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Depot repair or overhaul of a H-60 series aircraft APU. (Illustration #2, Reverse)

Legend for Figure 4-11B:
Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1, APU Depot Repair.

NOTE. Review the form that came with the APU. Block 6, Lines 1 through 5, should already be filled in. If Lines 4 and/or 5 are blank, do the calculations and fill them in. Total operating hours will only be entered for APUs with installed hour meters.

Page of . Enter page number and total number (black lead pencil) of pages.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Part Number</th>
<th>Serial Number</th>
<th>OM or Replacement Life</th>
<th>History Counts at Last Depot Repl.</th>
<th>Replacement Due (REV 1/97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine Wheel</td>
<td>42523-5</td>
<td>1653-202B</td>
<td>3000 Starts</td>
<td>LCF-1: 1, LCF-2: 0, T/T: 2998, OP HRS: 5998 Starts</td>
<td></td>
</tr>
</tbody>
</table>

5. **S/N.** Leave blank.

6. **HISTORICAL COUNTS ON COMPONENT/MODULE.

LINE 1 — PREVIOUS COUNTS OF COMPONENT/MODULE

a. **LCF-1.** The number of prior overhauls on the APU. Zero for new item.

b. **LCF-2.** The number of starts since the last overhaul. Zero for new item.

c. **TIME/TEMP INDEX.** The total number of starts since new. Zero for new item.

NOTE. The number of starts since new will not be zeroed after repair or overhaul.

d. **OPERATING HOURS.** The operating hours since
new. If the APU does not have an hour meter, leave blank.

NOTE. The operating hours will not be zeroed after repair or overhaul.

LINE 2 — READING AT INSTALLATION OF MODULE/RECORDER

a. LCF-1. The prior overhauls, same as Line 1.

b. LCF-2. The number of starts since the last overhaul, same as Line 1.

c. TIME/TEMP INDEX. The number of starts from the APU hour meter.

d. OPERATING HOURS. The operating hours from the APU hour meter. If the APU does not have an hour meter, leave blank.

LINE 3 — READING AT REMOVAL OF MODULE/RECORDER

a. LCF-1. The prior overhauls, same as Line 1.

b. LCF-2. The number of starts since last overhaul.

(1) If the APU has an hour meter, with number of starts on it, subtract line 2, block 6c from starts shown on the APU hour meter. Add this to line 1, block 6b, and enter here for total number of starts since last overhaul.

(2) If the APU does not have an hour meter, with number of starts on it, subtract line 2, block 6c from the number of starts on the current DA Form 2408–13, block 7. Add this to line 1, block 6b, and enter here for total number of starts since last overhaul.

c. TIME/TEMP INDEX. The number of starts since new.

(1) If the APU has an hour meter with the number of starts on it, enter the meter reading.

(2) If the APU does not have an hour meter with the total number of starts, enter the number of starts from the current DA Form 2408–13, block 7.

d. OPERATING HOURS. The number of operating hours from the APU hour meter. If the APU does not have an hour meter, leave blank.

LINE 4 — LINE 3 MINUS LINE 2. Subtract line 2 from line 3 for total historical counts on the APU since installation.

LINE 5 — TOTAL COMPONENT COUNTS. Add line 1 to line 4 for the accumulated historical counts on the APU.

7. HISTORY RECORDER S/N. Leave blank.

BACKSIDE.

8. NOMENCLATURE. Enter the name of each replaceable subcomponent on the APU. Subcomponents to be listed can be found in TB 1–1500–341–01.

9. PART NUMBER. Enter the manufacturer’s part number for each subcomponent.

10. SERIAL NUMBER. Enter the serial number for each subcomponent.

11. O/H OR REPLACEMENT LIFE.

a. Enter the maximum allowable APU hours or starts for the subcomponent. If the APU subcomponent is replaced on maximum allowable operating hours and/or starts, use two lines for each subcomponent. One line will reflect maximum allowable operating hours and the other line will reflect maximum allowable starts.

b. If the item in block 8 is a condition change item enter “COND” in the block.

c. When the TBO or “time to replacement” is changed, line out the old time and enter the new time. If the authority for this change was other than a change to the -23 TM, enter the authority in block 14.

12. HISTORY COUNTS AT LAST DEPOT REPLACEMENT.

a. The blocks will be split in half to accommodate two entries. One entry in the top half of the block and another entry in the bottom half of the block.

b. Enter in the top half of 12a — total number of APU overhauls, 12b — total APU starts since overhaul, 12c — total APU starts since new, and 12d — When the APU has an hour meter, enter total operating hours since new for the APU at the time of subcomponent installation. When the APU does not have an hour meter, leave Block 12d blank.

(1) If the APU has an hour meter, with number of starts on it, subtract line 2, block 6c from the number of starts on the current DA Form 2408–13, block 7. Add this to line 1, block 6b, and enter here for total number of starts since last overhaul.

(2) If the APU does not have an hour meter, with number of starts on it, subtract line 2, block 6c from the number of starts on the current DA Form 2408–13, block 7.

c. Enter in the bottom half of 12a — the total number of subcomponents overhauls, 12b — total subcomponents starts since overhaul, 12c — total subcomponents starts since new, and 12d — When the APU has an hour meter, enter total operating hours since new for each subcomponent at the time of installation on the APU. When the APU does not have an hour meter, leave Block 12d blank.

13. REPLACEMENT DUE (Hist rdr hr).

a. If the subcomponent has an assigned MAOT, the replacement time must be calculated. For an APU without an hour/start meter when the MAOT is based on a maximum number of APU starts, subtract the entry in the bottom portion of block 12c from block 11. Add this to the entry in the top portion of block 12c. This is the maximum number of allowed starts since new before replacement.

b. When the subcomponent has a MAOT based on a maximum number of operating hours, subtract the entry in the bottom portion of block 12d from block 11. Add this to the entry in the top portion of block 12d. This is the maximum number of operating hours allowed before replacement.
c. If the item in block 8 is a condition component enter "COND" in this block.

d. If a subcomponent is removed from the APU complete the front side of the DA Form 2408–16–1, block 6, lines 3, 4, and 5. Subtract the readings on the top half of block 12, from the entries in block 6, line 5. Add this to the entries in the bottom half of block 12 for the subcomponent. Transfer this information to the DA Form 2410, Copy 1, block 13, prepared for subcomponent removal. If a subcomponent is removed, line through the item on the backside of DA Form 2408–16–1.

e. If a new DA Form 2408–16–1 is prepared, package the new DA Form 2408–16–1 and DA Form 2410, Copy 3, with the repaired or overhauled APU. Send the old DA Form 2408–16–1 to AMSAM, ATTN: AMSAM-MMC-RE-FD (2410).

14. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data on APUs and subcomponents. Before you enter the data, enter the date of your entry. After you enter the historical data, enter your name, organization, and location. If more space is needed, use a DA Form 2408–15 as a continuation sheet. Print "DA Form 2408–16–1 Continuation" in the top margin of the form and complete the heading with the APU information. The following are examples of significant historical data: Installation or removal from aircraft, aircraft hours at installation and removal, crash damage, contamination, hot starts, over torques, over speeds, salt water immersion, and overhaul or major repair.

<table>
<thead>
<tr>
<th>LINE</th>
<th>LCF-1</th>
<th>LCF-2</th>
<th>TIMETEMP INDEX</th>
<th>OPERATING HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>0</td>
<td>2 9 9 8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>2 9 9 8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 4-12A. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Field replacement (Installation) of a H-60 series aircraft APU (Illustration #1)**
Figure 4-12B. Sample of a completed DA Form 2408-16-1, History Recorder Component Module Record. Field replacement (Removal) of a H-60 series aircraft APU (Illustration #2)
Legend for Figure 4-12C:

**Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1, field installation or removal of an APU.**

**NOTE.** When a serviceable APU is received, block 6, line 1 (Previous Counts of Component/Module) must have all required data entered. All data for required subcomponents must appear on the reverse side of the form. If the APU is removed from the aircraft, package the DA Form 2408–16–1 with the APU. Total operating hours since new will only be recorded for APUs with installed hour meters. If the APU does not have an installed hour meter leave block 6d blank. Enter the total number of starts since new from block 6c, line 1 to the current DA Form 2408–13, block 7 (STARTS CURRENT).

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MODEL</td>
</tr>
<tr>
<td>2</td>
<td>ENG S/N</td>
</tr>
<tr>
<td>3</td>
<td>NOMENCLATURE</td>
</tr>
<tr>
<td>4</td>
<td>PIN</td>
</tr>
<tr>
<td>5</td>
<td>S/N</td>
</tr>
<tr>
<td>6</td>
<td>HISTORICAL COUNTS ON COMPONENT/MODULE</td>
</tr>
<tr>
<td>7</td>
<td>HISTORY RECORDER S/N</td>
</tr>
</tbody>
</table>

### Blocks 1, 2, 3, and 4
Make sure that the APU model, serial number, and manufacturer’s part number, are entered correctly.

### 5. S/N
Leave blank.

### 6. HISTORICAL COUNTS ON COMPONENT/MODULE

**LINE 1+ — PREVIOUS COUNTS OF COMPONENT/MODULE.** This line should already be filled in.

**LINE 2 — READING AT INSTALLATION OF MODULE/RECORDER.** When a serviceable APU is installed this line must be completed.

**a. LCF-1.** Enter the total number of prior APU overhauls from block 6c, line 1.
b. LCF-2. Enter the total number of starts since overhaul from block 6b, line 1.

c. TIME/TEMP INDEX. Enter the starts from the APU hour meter or the DA Form 2410 for the APU.

d. Operating hours. Enter the operating hours from the APU hour meter. If APU does not have an hour meter, leave blank.

LINE 3 — READING AT REMOVAL OF MODULE/RECORDER. When an APU is removed from the aircraft this line must be completed.

a. LCF-1. Enter the total number of prior overhauls from block 6a, line 1.

b. LCF-2. The starts since overhaul.

(1) If the APU has an hour meter with the number of starts shown on the meter, subtract the entry in block 6c, line 2-, from the total starts shown on the APU hour meter. Add this amount to the entry in block 6b, line 1+, to get the total number of starts since last overhaul and enter.

(2) If the APU does not have an hour meter displaying number of starts, subtract the entry in block 6c, line 2-, from the number of starts entered on the current DA Form 2408–13, block 7. Add this amount to the entry in block 6b, line 1+, to get the total number of starts since last overhaul and enter.

c. TIME/TEMP INDEX. The starts since new.

(1) If the APU has an hour meter displaying the number of starts, enter the meter reading.

(2) If the APU does not have a hour meter displaying the number of starts, enter the number of starts from the current DA Form 2408–13, block 7.

d. OPERATING HOURS. Enter the number of operating hours from the APU hour meter. If the APU does not have an hour meter, leave blank.

LINE 4= — LINE 3 MINUS LINE 2. Subtract Line 2- from Line 3 and enter the results. This is the hours on the APU since last installation.

LINE 5= — TOTAL COMPONENT COUNTS. Add Line 1+ to line 4= and enter the results. This is the total hours since new on the APU. If removing the APU for installation on another aircraft (Controlled Substitution) reenter the information in Line 5= to the next open block 6, line 1+. Transfer the starts since new, in the new block 6c, line 1+, to the receiving aircraft’s DA Form 2408–13, block 7.

7. HISTORY RECORDER S/N. Enter the aircraft serial number that the APU is installed on.

BACKSIDE. Blocks 8, 9, 10, 11, 12, and 13. Completed by the repair or overhaul facility. When the TBO or “time to replacement” is changed, line out the old time and enter the new time. If the authority for this change was other than a change to the -23 TM, enter the authority in block 14.

NOTE. Enter the APU replacement time on the DA Form 2408–18 in the aircraft logbook if the APU is a TC or RC item.

14. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data on the APU or subcomponents. Before you enter the data, enter the date of your entry. After you enter the historical data, enter your name, organization, and location. If more space is needed, use a DA Form 2408–15 as a continuation sheet. Print "DA Form 2408–16–1 Continuation" in the top margin of the form and complete the heading with the APU information. The following are examples of significant historical data: Installation and removal from aircraft, aircraft hours at installation and removal, crash damage, contamination, hot starts, over torques, over speeds, salt water immersion, and overhaul or major repair.

NOTE. Attach the DA Form 2408–16–1 and the DA Form 2410 to the removed APU for shipment to higher level maintenance activity.
Figure 4-13. Sample of a completed DA Form 2408–16–1, History Recorder Component Module Record. Replacement of a hourmeter on a H-60 series aircraft APU.

Legend for Figure 4-13:
Preparation Instructions (by block number and title) for completing a DA Form 2408–16–1, replacement of an APU hour meter.

NOTE. When an APU hour meter is replaced, the current DA Form 2408–16–1, block 6, must be closed out and a new block 6 started. If a blank block 6 is not available on the current DA Form 2408–16–1, add a new form for the APU.

Blocks 1, 2, 3, and 4. Make sure that the model, serial number, and manufacturer's part number for the APU are correctly entered.

5. S/N. Leave blank.

<table>
<thead>
<tr>
<th>LINE</th>
<th>LCF-1</th>
<th>LCF-2</th>
<th>TIME/TEMP INDEX</th>
<th>OPERATING HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>a</td>
<td>2</td>
<td>3 2 5</td>
<td>3 6 0 7</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>2</td>
<td>0</td>
<td>2 7 8 2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>8 2 5</td>
<td>8 2 5</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2 7 8 2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>8 2 5</td>
<td>3 6 0 7</td>
</tr>
</tbody>
</table>

6. HISTORICAL COUNTS ON MODULE/COMPONENT.

LINE 3 — READING AT REMOVAL OF MODULE/RECORDer.

a. LCF-1. Enter the total number of prior overhauls from Line 1+.

b. LCF-2. Subtract the entry in block 6c, line 2-, from the total starts shown on the APU hour meter. Add this to the entry in block 6b, line 1+, for the total number of starts since last overhaul and enter the results.

c. TIME/TEMP INDEX. Enter the number of starts from the APU hour meter being removed.

d. OPERATING HOURS. Enter the number of operating
hours from the APU hour meter being removed. If the
APU does not have an hour meter, leave blank.

LINE 4= — LINE 3 MINUS LINE 2. Subtract Line 2-
from Line 3 and enter the results. This line is the hours
on the APU since last installation.

LINE 5= — TOTAL COMPONENT COUNTS. Add Line
1+ to Line 4= and enter the results. This line is the time
since new on the APU. Transfer to a new block 6, line
1+.

NEW BLOCK 6.

LINE 1+ — PREVIOUS COUNTS OF COMPONENT/
MODULE. Enter the data from old block 6, line 5=.

LINE 2- — READING AT INSTALLATION OF MODULE/
RECORDER. Enter the number of prior overhuals from
block 6a, line 1+. Enter the number of starts since over-
haul from block 6b, line 1+. Read the hour meter from
the replacement hour meter and enter the number of
starts in block 6c, and enter operating hours in block 6d.

7. HISTORY RECORDER S/N. Enter the aircraft serial
number that the APU is installed on.

BACKSIDE. No entries are required on the backside of
the form except for recalculation of replacement due
times. Recalculate the replacement due times to corre-
spond with the newly installed hour meter. When the
TBO or "time to replacement" is changed, line out the
old time and enter the new time. If the authority for this
change was other than a change to the -23 TM, enter
the authority in block 14.

a. If the RC or TC time is based on starts, subtract the
entry in top portion of block 12c from the entry in block
6c, line 1+. Add this amount to the entry in the bottom
portion of block 12c. Subtract from the MAOT in block
11 and add to the entry in block 6c, line 2-. This is the
number of starts expressed in hour/start meter starts
when the APU must be replaced. Enter this time in block
13. Change the APU replacement due time on the DA
Form 2408–18.

b. If the RC or TC time is based on operating hours,
subtract top half of block 12d from front side new block
6d, line 1+. Add this to bottom half of block 12d. Sub-
tract that from block 11 and add to new block 6d, line 2-,
for new replacement due time. Enter this time in block
13. Change the APU replacement due time on the DA
Form 2408–18.
**Figure 4-14A. Sample of a completed DA Form 2408–17. Aircraft Inventory Record. (Illustration #2, Front)**

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>NOMENCLATURE</th>
<th>QTY REQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AN/ARC-54 Radio Set</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AN/ARC-59 or ARN-83 ADF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AN/ARC-518X UHF Radio</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TS-1843/APX Test Set Transponder</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**DA FORM 2408-17, NOV 91**
**AIRCRAFT INVENTORY RECORD**

For use of this form, see DA PAM 738-751, the proponent agency is OCS/CG.
Legend for Figure 4-14B:
Preparation Instructions (by block number and title) for completing a DA Form 2408–17, Aircraft Inventory Record.

Page of . Enter the page number and the total number (black lead pencil) of pages.

1. SERIAL NUMBER. Enter the aircraft serial number (seven numerical digits).

2. MODEL. Enter the aircraft Mission Design Series.

3. AREA NAME. Enter the area/station designation of the part of the aircraft where the items are physically located (refer to the TM -23 that applies).

4. EQUIPMENT CHECKLIST ITEM NO. Enter items in sequence, starting with No. 1, for each aircraft area. Number your item as close as possible to the sequence they appear in their physical location. When items are added to an area, enter the item on the next open line and use the next sequence number.

NOMENCLATURE. Enter the item name, type, and model. Identify items that are part of a component/module or assembly to show their relationship to the major item.

QTY REQ. Enter the number of items called for in the TM -23 in each area. Enter the quantity of special equipment that was issued for the aircraft as an operating accessory, such as, hoist, high performance.

CHECK NUMBER. Enter the number (including zero "0") of each item physically present at each inventory. If an item is short, enter a remark in the remark's column. Enter this number in the area to the right of the equipment check number already printed on the form.

BACKSIDE.

5. VERIFICATION.

a. CHECK NUMBER. Enter the check number to correspond with the check on the front side of the form.

b. NAME OR PID. The personal identifier of the person who completes the inventory, to verify that the inventory was done.
c. **RANK.** The rank of the person who completes the inventory (for example, SSG, SFC, CW2, CPT).

d. **DATE.** Enter the date (dd mmm yy) the inventory was done.

6. **LOCATION OR REMARKS.**

<table>
<thead>
<tr>
<th>DATE</th>
<th>WHEEL TIME</th>
<th>WHEEL WITH BLADES</th>
<th>WHEEL WITH BLADES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BEFORE GRIND (1)</td>
<td>AFTER GRIND (2)</td>
</tr>
<tr>
<td>09 Dec 71</td>
<td>0</td>
<td>12.120</td>
<td></td>
</tr>
<tr>
<td>02 May 77</td>
<td>803</td>
<td>12.122</td>
<td>12.112</td>
</tr>
<tr>
<td>10 May 80</td>
<td>1255</td>
<td>12.112</td>
<td>12.102</td>
</tr>
</tbody>
</table>

**ABNORMAL TEMPERATURE AND/OR OVERSPEED DATA**

<table>
<thead>
<tr>
<th>DATE</th>
<th>ENGINE TIME</th>
<th>WHEEL TIME</th>
<th>TEMPERATURE (Degrees C)</th>
<th>SPEED</th>
<th>TIME OVER LIMIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**INSTALLATION DATA**

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>ENGINE</th>
<th>INSTALLED</th>
<th>REMOVED</th>
<th>W/T</th>
<th>REASON FOR REMOVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAD, TX</td>
<td>1531L13B</td>
<td>LE-203878</td>
<td>10 Sep 80 1726</td>
<td>1255</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-15A. Sample of a completed DA Form 2408–19. Aircraft Engine Turbine Wheel Historical Record (Illustration #1, Front)
Legend for Figure 4-15B:
Preparation Instructions (by block number and title) for completing a DA Form 2408–19, Aircraft Engine Turbine Wheel Historical Record

Page of . Enter the page number and total number (black lead pencil) of pages.

1. PART NO. Enter the turbine wheel part number.

2. S/N. Enter the turbine wheel serial number.

3. ACFT. Enter the aircraft serial number (seven numerical digits) the turbine wheel is installed on (black lead pencil).

4. NOMENCLATURE. Enter the turbine wheel noun.

5. NSN. Enter the turbine wheel National Stock Number.

6. CAGE NO. Enter the Contractor and Government Entity (manufacturer's code) number.

7. STAGE. Enter the turbine wheel's position stage number.

8. ACCEPTANCE DATE. Enter the date (dd mmm yy) that the turbine wheel was accepted into the Army inventory. If you do not know, enter "UNK."

9. WHEEL DIAMETRICAL MEASUREMENTS.

Note: Filled out only by depot level maintenance activity personnel that perform the work. AVUM/AVIM personnel will leave these blocks blank.

a. DATE. Enter the date (dd mmm yy) that the turbine wheel was measured.

b. WHEEL TIME. Enter the total time since new on the turbine wheel after the diameter is measured. If the turbine wheel is uninstalled, get this time from the DA Form 2410 or the attached material condition tag (DD Form 1574 through 1577 series). If the wheel is installed, get the time from the DA Form 2408–16.

c. WHEEL WITH BLADES.

(1) BEFORE GRIND. Enter the diameter measurements of the complete turbine wheel, including blades, before any grinding takes place.
(2) AFTER GRIND. Enter the diameter measurement of the turbine wheel, including blades, after grinding blades to the specified dimensional tolerance. If the "before grind" turbine wheel dimensions were within the specified tolerances, leave this block blank to show no grinding was done. When the first five lines are filled in, the measurement data will be entered in the blocks on the right hand side.

10. ABNORMAL TEMPERATURE AND/OR OVERSPEED DATA. Activities that know or are aware of any abnormal or marginal conditions will make entries in these blocks. (Example, whenever the established engine temperature or over speed limits are exceeded.)

a. DATE. Enter the date (dd mmm yy) that the abnormal or marginal condition occurred.

b. ENGINE TIME. Enter the engine time since new, to nearest hour, at the time the condition occurred. Compute this time by adding the total aircraft accumulated time since the engine was installed, to the engine time since new. Obtain this data from the 'Aircraft' DA Form 2408–16, and the current aircraft hours on the DA Form 2408–13.

c. WHEEL TIME. Enter the wheel time, to the nearest hour since new, that the condition occurred. Compute this time by adding the engine time accumulated since the turbine wheel was installed, to the turbine wheel time since new. Obtain this data from the 'Aircraft' DA Form 2408–16, the current aircraft hours on the DA Form 2408–13, block 11, and DA Form 2408–19, block 11.c.

d. TEMPERATURE (Degrees C). Enter the maximum temperature reached during the abnormal or marginal condition.

e. SPEED. Enter the maximum speed (RPM of engine) reached during the abnormal or marginal condition.

f. TIME OVER LIMIT. Enter how long the condition lasted in minutes and seconds.

g. REMARKS. Briefly explain the cause of the condition and any corrective action taken. For example, Fuel control failure. Engine Repl.

11. INSTALLATION DATE. Activities that remove or install a turbine wheel, will make entries in these blocks. These entries provide the overhaul facility with the complete turbine wheel installation and removal history.

a. ACTIVITY. Enter the name of the activity that installed or removed the turbine wheel.

b. ENGINE.

(1) MODEL. Enter the Mission Design Series of the engine that the turbine wheel is installed in.

(2) S/N. Enter the serial number of the engine that the turbine wheel is installed in.

c. INSTALLED.

12. TURBINE WHEEL BLADE DATA. Activities that actually remove and replace the turbine wheel blades will make entries in these blocks. Entries are not required for solid cast turbine wheels.

a. DATE. Enter the date (dd mmm yy) that the blade removal and replacement were done.

b. ACTIVITY. Enter the name of the activity doing the work.

c. W/T. Enter the turbine wheel time since new, to the nearest hour, when the blade was replaced. Determine this time by adding the time accrued on the engine, while it was installed in the aircraft, to the time shown in block 11, on the front side.

d. BLADE PART NUMBER.

(1) REMOVED. Enter the part number for each blade removed. If blades are not removed, enter "N/A."

(2) REPLACED. Enter the part number for each blade installed. If blades are not removed and replaced, enter "N/A."

(3) NEW/USED. Enter "NEW" or "USED" to show the status of each blade installed. If blades are not replaced, enter "N/A."

e. B POS. Show the blade positions that were replaced. All series of blades changed at one time will be shown as a single entry; i.e., 10, 17, 41, and 48. If all the blades were replaced, enter "ALL." If blades are not replaced, enter "N/A."

f. REMARKS. Briefly explain why the blades were replaced. If blades are not replaced, enter "N/A."

13. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data about the turbine wheel's operational life, as follows:
### T53/T55 TURBINE ENGINE ANALYSIS CHECK RECORD

For use of this form, see DA PAM 738-751, the proponent agency is DCS/OS.

![Image of DA Form 2408–19–1 sample](Image)

**Figure 4-16A. Sample of a completed DA Form 2408–19–1. T53/T55 Turbine Engine Analysis Check Record (Illustration #1)**

---

<table>
<thead>
<tr>
<th>4 DATE</th>
<th>5 BASE TORK</th>
<th>6 AIRCRAFT SERIAL NUMBER</th>
<th>7 ENG TSK</th>
<th>8 ENG NO</th>
<th>9 PRESS ALT</th>
<th>10 N1 ACT/REQ</th>
<th>11 TORQUE ACT/REQ</th>
<th>12 ENG/TOT ACT/REQ</th>
<th>13 REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Jan 89</td>
<td>51.2</td>
<td>6600837</td>
<td>0</td>
<td>29</td>
<td>3000</td>
<td>97.0/97.5</td>
<td>48.0/47.0</td>
<td>570/565</td>
<td>Baseline TEAC for engine installation. CCAD, Corpus Christi, TX</td>
</tr>
<tr>
<td>27 Oct 89</td>
<td>51.2</td>
<td>6600837</td>
<td>150</td>
<td>-1</td>
<td>7000</td>
<td>96.5/50.0</td>
<td>555/555</td>
<td>Unable to reach topping altitude due to weather. CCAD, Corpus Christi, TX</td>
<td></td>
</tr>
</tbody>
</table>

---

a. The date (dd mmm yy) the entry was made.
b. Significant historical data.
c. The PID of the person making the entry.
d. The name and location of the activity (organic or contract support) to which the person belongs. Entries about overhauls will include the directive (DMWR or TM) number and date (dd mmm yy) used to perform the overhaul. Commercial overhaul activities must also show the overhaul contract number.
Legend for Figure 4-16B:
Preparation Instructions (by block number and title) for completing a DA Form 2408–19–1, T53/55 Turbine Engine Analysis Check.

Page of . Enter the page number and the total number (black lead pencil) of pages.

1. NOMENCLATURE. Enter "Engine."

2. ENGINE MODEL. Enter the engine type, model, and series.

3. ENGINE SERIAL NUMBER. Enter the engine serial number.

NOTE. Columns 4 through 13 are used to show actual and required engine performance data. Enter actual flight performance data for a TEAC baseline, then compute the new TEAC baseline information for N1 percent, temperature using the engine TM -23. The required torque will always be based upon the power adjustment chart. Use the torque found on the engine data plate.

4. DATE. Enter the date (dd mmm yy) the entry was made or the check was completed.

5. BASE TORQ. For T53 series engines enter the torque from the engine data plate. For T55 series engines leave blank.

6. AIRCRAFT SERIAL NUMBER. Enter the aircraft serial number (seven numerical digits).

7. ENG TSO. Enter the cumulative time, to the nearest hour, since new or last overhaul on the engine. If none enter "0."

<table>
<thead>
<tr>
<th>DATE</th>
<th>BASE TORQ</th>
<th>AIRCRAFT SERIAL NUMBER</th>
<th>ENG TSO</th>
<th>N1% ACT/REQ</th>
<th>TORQUE ACT/REQ</th>
<th>12 ENG/TOT ACT/REQ</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Jan 89</td>
<td>8322386</td>
<td>0</td>
<td>10</td>
<td>104.2/</td>
<td>98.0/</td>
<td>870/</td>
<td>Engine topped for engine installation CCAD, CC TX</td>
</tr>
<tr>
<td>21 Mar 90</td>
<td>8322386</td>
<td>153</td>
<td>20</td>
<td>104.6/</td>
<td>95.6/</td>
<td>860/</td>
<td>PAC for No. 15 PPM</td>
</tr>
</tbody>
</table>
8. **OAT oC.** Enter the actual Outside Air Temperature (OAT). Do not enter compensated OAT.

9. **PRESS ALT.** Enter the altimeter reading with the barometric pressure indicator set at 29.92 inches Hg.

10. **N1% ACT/REQ.** Enter the actual indicated N1 percent at the time of the check. Enter the computed percent corrected to the surrounding conditions based on the reestablished standard. For example, 97.0/97.5. For T55 series engines, when you do a Power Assurance Check (PAC) leave blank.

11. **TORQUE ACT/REQ.** Enter the actual indicated torque readings at the time of the check. For T53 series engines, enter the computed torque from the engine chart based on the torque from the engine data plate; for example, 48.0/47.0. For T55 series engines, enter the computed torque from the engine in the applicable TM-23. The computed torque entry is not needed during a PAC.

12. **ENG/TOT ACT/REQ.**

   a. For T53 series engines, enter the actual indicated EGT or Turbine Gas Temperature (TGT) at the time of the check in the actual side of the block. Enter the EGT or TGT corrected to ambient conditions taken from the EGT adjustment factors table in the required side of the block; for example, 570/565.

   b. For T55 series engines, enter the Power Turbine Inlet Temperature (PTIT) at the time of the check in the actual block. Enter the PTIT corrected to ambient conditions taken from the PTIT adjustment factors table in the required block.

13. **REMARKS.** Briefly explain why a TEAC was performed. Indicate whether it was a normal or a baseline TEAC.

---

<table>
<thead>
<tr>
<th>1. NOMENCLATURE</th>
<th>2. ENGINE MODEL</th>
<th>3. ENGINE SERIAL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Engine</strong></td>
<td><strong>T700-GE-701C</strong></td>
<td><strong>GEE761429</strong></td>
</tr>
<tr>
<td><strong>DATE</strong></td>
<td><strong>AIRCRAFT</strong></td>
<td><strong>ENGINE</strong></td>
</tr>
<tr>
<td><strong>SERIAL NUMBER</strong></td>
<td><strong>TIME</strong></td>
<td><strong>REV PC</strong></td>
</tr>
<tr>
<td><strong>6. PRESS ALT</strong></td>
<td><strong>9. NG%</strong></td>
<td><strong>10. TORQUE</strong></td>
</tr>
<tr>
<td><strong>7. FAT PC</strong></td>
<td><strong>11. TGT</strong></td>
<td><strong>12. REMARKS</strong></td>
</tr>
<tr>
<td><strong>8. ACT</strong></td>
<td><strong>TTV</strong></td>
<td></td>
</tr>
<tr>
<td><strong>ETF</strong></td>
<td><strong>866</strong></td>
<td></td>
</tr>
<tr>
<td><strong>864</strong></td>
<td><strong>865</strong></td>
<td></td>
</tr>
<tr>
<td><strong>5 Jan 91</strong></td>
<td>8910199</td>
<td>Baseline Initial Installation</td>
</tr>
<tr>
<td><strong>7 Jul 91</strong></td>
<td>8910199</td>
<td>Required for failed HIT check</td>
</tr>
</tbody>
</table>

**Figure 4-17. Sample of a completed DA Form 2408-19-2. T700 Series Turbine Engine Analysis Check Record (Illustration #2)**
Legend for Figure 4-17:
Preparation Instructions (by block number and title) for completing a DA Form 2408–19–2, T700 Series Turbine Engine Analysis Check Record.

Page of . Enter the page number and the total number (black lead pencil) of pages.

1. NOMENCLATURE. Enter "Engine."

2. ENGINE MODEL. Enter the engine type, model, and series.

3. ENGINE SERIAL NUMBER. Enter the engine serial number from the engine data plate.

NOTE. Blocks 4 through 12 are used to show actual and required engine performance data. Enter actual flight data for a TEAC baseline, then compute the new TEAC baseline information for Ng percent and temperature. The required torque will always be based upon the power adjustment chart. Use the torque found on the engine data plate.

4. DATE. Enter the date (dd mmm yy) that the entry was made or the test was completed.

5. AIRCRAFT SERIAL NUMBER. Enter the complete aircraft serial number (seven numerical digits).

6. ENGINE TIME. Enter the cumulative time since new, or last overhaul on the engine.

7. FAT oC. Enter the actual Free Air Temperature (FAT). Do not enter compensated FAT.

8. PRESS ALT. Enter the altimeter reading with the barometric pressure indicator set at 29.92 inches Hg.

9. NG%. Enter the actual indicated NG percent at the time of the check.

10. TORQUE

ACT. Enter the actual indicated torque readings at the time of the check.

TTV. Enter the target torque value as computed from the engine chart.

ETF. Compute the engine torque factor (ETF) per TM 55–2840–248–23.

11. TGT. Enter the actual indicated turbine gas temperature at the time of the check.

12. REMARKS. Briefly explain why a TEAC was performed. Indicate whether it was a normal or baseline TEAC.
**Figure 4-18. Sample of a completed DA Form 2408–19–3. Engine Component Operating Hours Record**

<table>
<thead>
<tr>
<th>Block</th>
<th>Field Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PERIOD ENDING DATE (Julian).</td>
<td>Enter the julian date for the report period (the 15th of each month).</td>
</tr>
<tr>
<td>2</td>
<td>ORGANIZATION.</td>
<td>Enter the name of the organization filling out the form.</td>
</tr>
<tr>
<td>3</td>
<td>UIC.</td>
<td>Enter the Unit Identification Code of the organization filling out the form.</td>
</tr>
<tr>
<td>4</td>
<td>LOCATION.</td>
<td>Enter location of the aircraft when the form is filled out.</td>
</tr>
<tr>
<td>5</td>
<td>TELEPHONE NUMBER.</td>
<td>Enter the duty telephone number (DSN or commercial) of the person filling out the form.</td>
</tr>
<tr>
<td>6</td>
<td>AIRCRAFT SERIAL NO.</td>
<td>Enter the aircraft serial number (seven numerical digits) that the engines in Block 9 are installed on.</td>
</tr>
<tr>
<td>7</td>
<td>AIRCRAFT HOURS.</td>
<td>Enter the current aircraft hours (rounded off to a whole number) shown on the DA Form 2408–13 when the form was filled out. Do not enter &quot;No Change.&quot; The readings must be submitted whether the engine has been operated or not.</td>
</tr>
<tr>
<td>8</td>
<td>ENGINE SERIAL NO.</td>
<td>Enter the #1 and #2 engine serial numbers for the aircraft in block 6.</td>
</tr>
</tbody>
</table>

Legend for Figure 4-18:
Preparation Instructions (by block number and title) for completing a DA Form 2408–19–3, Engine Component Operating Hours Record

Page of . Enter the page number and total number of pages of DA Forms 2408–19–3 for this report period.

NOTE. Complete this form using ballpoint pen, typewriter, or computer.
9. **POS.** Preprinted with a "1" for NO. 1 position engine and "2" for NO. 2 position engine.

10. **LCF-1.** Enter the current history recorder reading for the Low Cycle Fatigue-1 for each engine when the form is filled out.

11. **LCF-2.** Enter the current history recorder reading for the Low Cycle Fatigue-2 for each engine when the form is filled out.

12. **T/TI.** Enter the current history recorder reading for the Time and Temperature Index for each engine when the form is filled out.

13. **OP HRS.** Enter the current history recorder reading for the Operating Hours for each engine when the form is filled out.

14. **HIST RCDR S/N.** Enter the History Recorder Serial Number, for each engine.

---

![Image of DA Form 2408-20](image.png)

**Figure 4-19A. Sample of a completed DA Form 2408-20. Oil Analysis Log (Illustration #1, Front)**
Legend for Figure 4-19B:
*Preparation Instructions (by block number and title)* for completing a DA Form 2408–20, Oil Analysis Log

**NOTE.** Special oil samples may be entered with red lead pencil, for units keeping records the manual way.

**PAGE of** . Enter the page number and total number (black lead pencil) of pages.

**1. END ITEM.**

a. **NOMENCLATURE.** Enter "Helicopter."

b. **MAKE OR TYPE.** Enter the aircraft Mission Design Series.

c. **SERIAL NUMBER.** Enter the aircraft serial number (seven numerical digits).

**2. SAMPLE FREQUENCY.** Enter the sampling frequency in hours.

**3. COMPONENT.**

a. **NOMENCLATURE AND TYPE.** Enter the name of the component/module that the oil or grease sample was taken from. When a sample is taken from an oil wetted system and not a component, enter the name of the system. For example, Flt. Cont. Hyd. Sys.

b. **SERIAL NUMBER.** Enter the serial number of the component/module that the oil sample is taken from. If the oil or grease sample was not taken from a component leave blank.

c. **TIME SINCE NEW OR OVERHAUL.** If the component/module is installed and has never been overhauled, or rebuilt, enter the time since new when the item was installed on the aircraft. If the component has been overhauled or rebuilt, enter the time since the
item was overhauled or rebuild when the item was installed on the aircraft. If the sample was not taken from a reportable component, the time since new on the airframe will be entered in this block. This time will be reentered in this block on future DA Forms 2408–20 until the component/module is replaced, overhauled, or rebuilt.

d. ACFT HRS LAST OIL CHANGE. Enter the aircraft hours when the oil was last changed.

e. ACFT HRS INSTALLED. Enter the aircraft hours when the component/module was installed on the aircraft. For hydraulic systems, enter "0."

4. DATE SAMPLE SUBMITTED. Enter the date (dd mmm yy) that the oil sample was taken.

5. HOURS.

a. END ITEM. Enter the current aircraft hours (to the nearest hour) when the oil sample was taken.

b. COMPONENT. Enter the current component/module hours (to the nearest hour) when the oil sample was taken. If the component/module has never been overhauled or rebuilt, enter the time since new. If the component/module has been overhauled or rebuilt, enter the time since last overhaul or rebuild.

c. LAST OIL CHG. Enter the component/module operating hours since the last oil change (to the nearest hour).

6. REASON FOR SAMPLE. Enter "Routine" if the oil sample is scheduled and "special" if the oil sample is not routine.

7. RESULTS. Enter the results of the laboratory analysis. For example, Satisfactory; Maintenance recommended by the laboratory; and so on. Document the findings for the 25 Hour Chip Detector Inspection such as the amount of debris (light or medium) and type of debris using description on the Oil Debris Classification Chart. If units using the manual record keeping system, can legibly enter the results and required actions in this block, no entry is required in block 9, REMARKS, or if more room is needed continue the entry in block 9.

8. RESULTS RECEIVED.

a. Date. Enter the date (dd mmm yy) the results of the sample were received at your unit or when you received a phone call or message from the oil lab concerning this sample.

b. PID. The personal identifier of the person who entered the results in block 7.

9. REMARKS. Units using the manual way of keeping records, will enter the location of the oil lab, when a lab other than the normal lab performs the oil analysis and the results are unsatisfactory. If the results and required actions can’t be legibly entered in block 7, use this block for continuation. For units using ULLS-A or LAS enter all AOAP laboratory requests for special oil samples or maintenance required, by the AOAP laboratory. Precede the entry with the date, and enter a brief statement about the special oil sample or maintenance requirement. Enter the location of the laboratory that did the analysis requiring the special sample or maintenance action, and the PID, unit, and location of the person making the entry.
## METER TRACKED COMPONENT RECORD

For use of this form, see DA PAM 738–751; the proponent agency is DCSLOG.

<table>
<thead>
<tr>
<th>1. NOMENCLATURE AND WUC</th>
<th>2. NSN</th>
<th>3. PART NUMBER OR MODEL</th>
<th>4. SERIAL NUMBER</th>
<th>5. WUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHT TRANSMITTER 76FOIA</td>
<td>5855-01-299-5859</td>
<td>AN/ALQ-144 (V) 1</td>
<td>3765</td>
<td>76FO1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. ACFT MODEL</th>
<th>7. ACFT SERIAL NUMBER</th>
<th>8. ACFT HRS INSTALLED</th>
<th>9. METER READINGS AT INST</th>
</tr>
</thead>
<tbody>
<tr>
<td>76FOIA</td>
<td>215-923-36</td>
<td>3445</td>
<td>440</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. NOMENCLATURE AND WUC</th>
<th>PIN AND NSN</th>
<th>COMPONENT SERIAL NUMBER OR LOCATION</th>
<th>NOMEN INSTR HRS</th>
<th>COMP INSTR HRS</th>
<th>REPLACE LIFE</th>
<th>REPLACE MNT DUE METER READING</th>
</tr>
</thead>
<tbody>
<tr>
<td>76FOIA</td>
<td>5855-01-299-5859</td>
<td>2336</td>
<td>370</td>
<td>0</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>76FOIB</td>
<td>310-01-28-9537</td>
<td>ALQ-144</td>
<td>425</td>
<td>0</td>
<td>200</td>
<td>625</td>
</tr>
<tr>
<td>76FOIC</td>
<td>320-01-28-934</td>
<td>9854</td>
<td>370</td>
<td>0</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>76FOID</td>
<td>310-01-28-9537</td>
<td>ALQ-144</td>
<td>370</td>
<td>0</td>
<td>400</td>
<td>770</td>
</tr>
<tr>
<td>76FOIE</td>
<td>610-01-39-2399</td>
<td>BNNB543</td>
<td>370</td>
<td>0</td>
<td>400</td>
<td>770</td>
</tr>
<tr>
<td>76FOIF</td>
<td>501-01-877310</td>
<td>FGH6654</td>
<td>370</td>
<td>100</td>
<td>400</td>
<td>770</td>
</tr>
<tr>
<td>76FOID</td>
<td>615-01-91-5463</td>
<td>ALQ-144</td>
<td>440</td>
<td>0</td>
<td>400</td>
<td>840</td>
</tr>
</tbody>
</table>

DA FORM 2408-33-R, OCT 97

Figure 4-20A. Sample of a completed DA Form 2408–33–R. Meter Tracked Component Record (Illustration #1, Front)
Figure 4-20B. Sample of a completed DA Form 2408–33–R. Meter Tracked Component Record (Illustration #2, Reverse)
Legend for Figure 4-20B:

Preparation Instructions (by block number and title) for completing a DA Form 2408–33–R, Meter Tracked Countermeasure Record

Page of , Enter the page number and total number (black lead pencil) of pages.

1. NOMENCLATURE. Enter "Countermeasures Set."

2. NSN. Enter the National Stock Number of the countermeasure set.

3. PART NUMBER OR MODEL. Enter the model of the countermeasure set.

4. SERIAL NUMBER. Enter the serial number of the countermeasure set.

5. WUC. Enter "76F01."

6. ACFT MODEL. Enter the model (black lead pencil) of the aircraft the AN/ALQ-144 is installed on or assigned to.

7. ACFT SERIAL NUMBER. Enter the serial number (black lead pencil) of the aircraft the AN/ALQ-144 is installed on or assigned to.

8. ACFT HRS INSTALLED. Enter the aircraft hours, to the nearest hour (black lead pencil), when the AN/ALQ-144 was installed on the aircraft. If unknown, enter the current aircraft hours.

9. METER READINGS AT INST. Enter the elapsed time meter reading (black lead pencil) when the AN/ALQ-144 was installed on the aircraft. If unknown, enter the current elapsed time meter reading.

10a. NOMENCLATURE AND WUC. Enter on the top line the subcomponent name, listed in TB 1–1500–341–01. Make sure you include each of the items listed in the TB. Enter on the bottom line the proper Work Unit Code. The WorkUnit Code can be found in TB 1–1500–341–01, for each component/module.

10b. P/N AND NSN.

a. Enter on the top line the part number for each subcomponent.

b. Enter on the bottom line the national stock number for each subcomponent.

10c. COMPONENT SERIAL NUMBER OR LOCATION. Enter the serial number for each subcomponent. If the subcomponent does not have a serial number, enter the location of the subcomponent.

10d. NOMEN INST HRS. Enter the elapsed time meter reading from the countermeasure set when the subcomponent was installed on the countermeasure set.

10e. NOMEN REMV HRS. Enter the elapsed time meter reading from the countermeasure set when the subcomponent was removed from the countermeasure set.

10f. COMP INST HRS. Enter the total hours on the subcomponent, in block 10a., when it was installed on the countermeasure set.

10g. COMP RMVL HRS. Enter the total hours on the subcomponent, in block 10a., when it was removed from the countermeasure set (subtract 10e. from 10d. and add that to 10f.).

10h. REPLACE LIFE. Enter the retirement life of the subcomponent.

10i. REPLACEMENT DUE METER READING. Enter the replacement time, in elapsed time meter hours, when the subcomponent is due replacement (subtract 10f from 10h and add to 10d).

11. SIGNIFICANT HISTORICAL DATA. Enter any significant historical data pertaining to the countermeasure set.

Chapter 5
Aviation Life Support Equipment and Aviation Night Vision Goggles Forms and Records Procedures

5–1. General

a. The forms in this chapter help in tracking, by serial number; scheduling; recording; and managing maintenance operations of ALSE and aviation NVGs equipment.

b. The forms show the results of maintenance checks and services, inspections, and provide a record of faults discovered during equipment operation.

c. This chapter also tells how to use, prepare, process, and dispose of maintenance forms used in support of ALSE and Aviation NVGs.

d. An NVG Logbook (Equipment Record Folder) is required for each set of NVGs assigned to a unit/activity.

Note. The Equipment Record Folder is shown in DA Pam 738–750. Folder, Equipment Record, SN 7510–01–065–0166, CAGE Code 81349, P/N MIL–F–43986, 8" by 10", vinyl backing, 4 color camouflage pattern, transparent window front cover 3.125" by 5.125", four vinyl envelopes, two pockets, one inside front and rear covers, pockets slit from top to bottom 3.5" from edge. This Equipment Record Folder may also be used for ALSE equipment records. The folders are available at Self-Service Supply Centers.

5–2. DA Form 2407, Maintenance Request, and DA Form 2407–1, Maintenance Request Continuation Sheet

Refer to chapter 3 for policy/procedures, and preparation instructions on how to complete DA Forms 2407 and 2407–1.

5–3. DA Form 2408–5, Equipment Modification Record.

a. Purpose. This form records the requirements for, and application of all authorized DA modifications to Aviation NVGs, listed in appendix D (see fig 5–1).

Note. DA Form 2408–5 will not be used to record SOU messages/TBs. The DA Form 2408–15; Historical Record for Aircraft, prepared for NVGs, will be used to record SOU messages/TBs that apply.

b. Use. This form is a permanent record of MWOs for Aviation NVGs listed in appendix D.

c. General instructions.

(1) Do not prepare a DA Form 2408–5 for aviation NVGs until the first MWO for the goggles has been issued.

(2) DA Form 2408–5 is split into six sections: MWO Number and Date (block 4), MWO Title (block 5), Organization Applying MWO (block 6), Name or PID (block 7), Date (block 8), and Manhours (block 9).

(3) Entries will be made on DA Form 2408–5 when an MWO is received that is applicable to the NVGs. If you learn that an MWO
5–4. DA Form 2408–15, Historical Record for Aircraft

a. Purpose. This form provides historical data on aviation NVGs throughout their service life (see fig 5–2).

b. Use. This form is used to record significant historical data such as—

(1) Major repairs to aviation NVGs.

(2) Accomplishment of SOF messages, SOU messages, ASAMs, and TBs on aviation NVGs.

(3) To record the replacement of image intensifier tube(s) and the new serial number of the replacement tube(s).

(4) To record Light Interference Filter (LIF) kit installation when the AVIM maintenance section installs the kit.

Note: If the NVGs are received from the factory with the LIF installed, this entry is not required.

(5) Other information that is considered to be significant historical data, and will serve a useful purpose to activities receiving the NVGs for operation, maintenance, overhaul, or rebuild.

c. Disposition.

(1) This form will remain with the NVGs throughout their service life. This form will be placed in the second vinyl page of the logbook.

(2) If the NVGs are transferred to another unit or activity, the DA Form 2408–15 will be shipped with the goggles. The ALSE technician will check this form for accuracy and completeness, before the NVGs are transferred.

(3) This form will remain with the NVGs until they are determined to be unrepairable. When the determination is made that the NVGs are no longer repairable, the form will be destroyed.

5–5. DA Form 2408–21, Life Raft Inspection Record

a. Purpose. This form provides a record of the life raft inventory and maintenance inspections (see fig 5–3).

b. Use. This form is used—

(1) As an inventory record of installed components.

(2) To show the completion, and next due date of inspections per TM 5–4220–202–14.

c. General instructions.

(1) For one man life rafts, complete only blocks 1 through 4, 6, 11, 22a, b, c, and d.

(2) Check multiplex raft, with accessory containers installed per instructions in TM 5–4220–202–14.

d. Disposition. Destroy the form 6 months after the last inspection/service was recorded in block 22.

5–6. DA Form 2408–22, Helmet and Oxygen Mask/Connector Inspection Record

a. Purpose. This form provides a record of helmet, oxygen mask/connector, and NVG visor inspections and maintenance performed (see fig 5–4).

b. Use. This form is used to record—

(1) Completed helmet inspections per TM 10–8415–206–12&P.


(3) Completed visor inspections and continuity checks per TM 11–5855–263–23&P.

(4) Repairs made to the helmet, visor, and oxygen mask/connectors.

(5) Annual helmet and oxygen mask fittings.

(6) The NVG visor: 120 day inspection.

c. General instructions. Maintain this form in the ALSE shop separate from the NVG records.

d. Disposition. Destroy the form 6 months after the last inspection/service was recorded, in block 9 or 10.

5–7. DA Form 2408–23, Survival Radio/Emergency Location Transmitter Inspection Record

a. Purpose. This form provides a record of inspections and maintenance needed and completed for the survival radio/emergency location transmitter (ELT). (see fig 5–5).

b. Use. This form is used to—

(1) Provide a record of completed inspections, and shows when the next inspections are due per TM 11–5820–800–13&P.

(2) Identify the battery installed in the ELT.

(3) Record significant historical data, SOF and SOU messages, ASAMs, TBs, and so forth.

c. Disposition. Destroy the form 6 months after the last inspection and service was recorded in block 9.

5–8. DA Form 2408–24, Survival Kit Inspection and Maintenance Record

a. Purpose. This form provides a record of all inspections and maintenance needed and completed for the survival kit (see fig 5–6).

b. Use. This form is used to—

(1) Record completed inspections and show when the next inspection is due per TM 55–1680–317–23.

(2) List all components or items installed in the survival kit.

(3) Record faults found during inspections, and corrective action taken.

(4) Record expiration dates and lot numbers for installed ammunition and flares.

c. Disposition. Destroy the form 6 months after the last inspection and service was recorded in block 12.
5–9. DA Form 2408–25, Mesh Net Survival Vest Inspection Record.
   a. Purpose. This form provides a record of all inspections and maintenance needed and completed for the Mesh Net Survival Vest (see fig 5–7).
   b. Use. This form is used to—
      (1) Record completed inspections and show when the next inspections are due per TM 55–1680–317–23.
      (2) List all components or items installed or attached to the vest.
      (3) Identify, by serial number, the installed or assigned emergency radio and light marker.
      (4) List the type and lot number of any installed munitions.
      (5) List the type, lot number and expiration date of the first aid components.
   c. Disposition. Destroy the form 6 months after the last inspection or service was recorded in block 9.

5–10. DA Form 2408–26, Life Preserver Inspection Record.
   a. Purpose. This form provides a historical record of all life preserver inspections and maintenance needed and completed (see fig 5–8).
   b. Use. This form is used to—
      (1) Record completed inspections, and show when the next inspection is due per TM 5–4220–202–14.
      (2) Record significant historical information on life preserver units.
      (3) Show a record of completed CO2 inflation tests.
   c. Disposition. Maintain this form in the ALSE shop. Destroy the form 6 months after the last inspection or service was recorded in block 11.

5–11. DA Form 2408–27, Life Preserver Data.
   a. Purpose. This form provides a record of inspection and inflation tests needed for the life preserver (see fig 5–9).
   b. Use. This form is used to—
      (1) Completed C02 inflation tests, and show when the next inflation test is due per TM 5–4220–202–14.
      (2) Completed life preserver inspections and show when the next inspection is due per TM 5–4220–202–14.
      (3) Historical data for each life preserver.
   c. Special instructions.
      (1) Make sure that DA Form 2408–26 is updated when DA Form 2408–27 is changed.
      (2) Attach the DA Form 2408–27 to the life preserver.
   d. Disposition. This form is used only to record inflation tests and may be replaced as necessary. Destroy the form 6 months after the last inspection or service was recorded in block 6.

5–12. DA Form 2408–28, Oxygen Console Service Record.
   a. Purpose. This form provides a record of the oxygen system and will be affixed to the console. A second copy of the form will be used as a shop record (see fig 5–10).
   b. Use. This form is used to—
      (1) Serve as an inventory of installed components.
      (2) Record completion and next due date of inspections per TM 55–1660–247–12.
      (3) Record the servicing, repair, or modification of the unit.
   c. Disposition. Destroy the oxygen console copy of the form 1 year after the last inspection was recorded in block 7.

   a. Purpose. This form provides a record of inspections and maintenance needed and completed for the anti-exposure coveralls (see fig 5–11).
   b. Use. This form is used to record—
      (1) Completed inspections, and when the next inspection is due per TM 10–8475–202–13.
      (2) Faults found during inspections, and all corrective action taken.
   c. Disposition. Destroy the form 6 months after the last inspection or service was recorded in block 6.

5–14. DA Form 2408–30, NVG Inspection and Maintenance Record.
   a. Purpose. This form provides a record of all faults found during assembly, preoperational checks, preventive maintenance checks and services, special inspections, and operation of aviators NVG system (see fig 5–12).
   b. Use. This form is used for aviation night vision goggles, AN/PVS-5 and AN/AVS-6 series. It is used to—
      (1) Record operator remarks or faults detected and dates found.
      (2) Record action taken to correct faults and dates corrected.
      (3) Record condition status symbols of NVGs.
      (4) Record completed maintenance, services, checks, and inspections, and dates completed.
   c. Special instructions for the operator.
      (1) Before using NVGs in the aircraft, perform a preoperational check to determine if the equipment is ready to use.
      (2) Review the DA Form 2408–30 to ensure that the next scheduled maintenance inspection is not overdue, and check the condition status of the NVG to assure that equipment is ready for use.
      (3) Distortion evaluation completion requires the signatures of two experienced ANVIS/NVG pilots to be entered.
   d. General instructions.
      (1) It is recommended that units retain the DA Form 2408–30 while NVGs are at the AVIM unit for repair or inspection. After NVGs are returned from a maintenance facility, the owning unit will complete the DA Form 2408–30, PART II - CORRECTING INFORMATION, ACTION section, by entering a short description of the action taken from the DA Form 2407, after verifying the work was inspected. After the short description, the maintainer will enter his or her signature. When the fault is a red “X” or circle red “X” the TI will ensure a satisfactory MOC is completed, and enter “Insp OK” after the maintainer’s signature, and enter his or her signature in the TIPID block.
      (5) Commanders at the AVUM level may authorize the NVG maintainer to also be the TI. In unit/activities where the commander has designated the maintainer to perform TI duties the maintainer/TI must sign after the corrective action, as well as the TIPID block when the fault is a red “X” or circle red “X.” Paragraph 1–9b of this pamphlet applies to all unit/activities that perform other than AVUM level work.
   e. Note. Three month PMCS consists of inspections, checks, and services of the NVG and power pack, high/low resolution test, and for ANVIS an infinity focus check.
   f. Paragraph 1–9b
red ink for status symbols. The commander or designated representatives may use blue or black ballpoint pen to clear red “X” or circle red “X” entries. The use of transparent tape is authorized for use in block 6. Tape must be of the type you can print on with a pencil.

(4) Once a status symbol is in the STATUS block, it will not be erased or changed even if entered in error (para 1–9). The person who corrects a red dash or red diagonal fault will enter their last name initial over the status symbol. A red “X” or circled red “X” status symbol will be initialed over only by a qualified designated representative.

(5) The person who finds a fault will enter a short description of the fault, maintenance check, service, or inspection in the FAULT INFORMATION Block and sign his or her name behind the entry. If more space is needed in the FAULT INFORMATION block to enter a fault/remark then enter “Continued” or “Cont.” on the last line of the FAULT INFORMATION block and continue the fault/remark in the next open FAULT INFORMATION block.

(7) When corrective action has been taken to correct the fault, deficiency, condition, incorrect entry, or directive (such as, SOU messages, TBs or MWOs), and components or other repair parts are removed and reinstalled, or replaced, the person making the corrective action will enter the action taken in PART II - CORRECTING INFORMATION block. Using words or phrases, such as, “applied,” “tested,” “installed,” “serviced,” “replaced,” “repaired,” “adjusted,” or “erroneous entry” with other brief information, to describe the corrective action, will be sufficient. If you use one or more words to describe action taken, or use authorized abbreviations, it will not be considered in error. DO NOT use the word “Corrected.”

(8) Upon completion of the corrective action, the person making the corrective action will sign his or her name and place their last name initial over the red dash or diagonal symbol in the STATUS block of the FAULT INFORMATION block. To clear a Red “X” or Circled Red “X” symbol, the completed action must be inspected by a designated representative per paragraph 1–9.

(9) The person completing the corrective action on the DA Form 2408–30 that calls for additional entries on historical forms or records, such as, DA Forms 2408–5 or 2408–15, will be responsible for entries on the historical forms.

e. Disposition. Maintain the current DA Form 2408–30 in the NVG carrying case until the form is completely filled. The closed out form will be filed in the third vinyl page of the logbook. All additional closed out forms will be kept in the fourth vinyl page of the logbook for 6 months from the date of the last entry on the form.

221DA PAM 738–751 • 15 March 1999

5–15. DD Forms 1574/1574–1, 1575/1575–1, 1576/1576–1, 1577/1577–1, and 1577–2/1577–3, Tags/Labels (Material). Refer to chapter 3, for policy/procedures and preparation instructions on how to complete the tags/labels.
### Figure 5-1. Sample of a completed DA Form 2408-5, Equipment Modification Record.

**Legend for Figure 5-1:**

**Preparation Instructions (by block number and title) for completing a DA Form 2408-5, Equipment Modification Record, when used for Night Vision Goggles**

**Page of .** The page number and total number (black lead pencil) of pages.

1. **NOMENCLATURE.** Enter the item name (for example, ANVIS or NVG).

2. **MODEL.** Enter the model of the NVG (for example, AN/PVS-5, AN/AVS-6(V)1, or GM-6(V)1).

3. **AIRCRAFT SERIAL NUMBER.** Enter the serial number of the NVGs.

4. **MWO NUMBER AND DATE**

<table>
<thead>
<tr>
<th>MWO NUMBER AND DATE</th>
<th>MWO TITLE</th>
<th>ORGANIZATION APPLYING MWO</th>
<th>NAME OR IPD</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVSCOM MSG 3120000Z</td>
<td>One Time Wiring of GM-6</td>
<td>DOL Maint.</td>
<td>Ft. Rucker AL</td>
<td>Sep 90</td>
</tr>
<tr>
<td>31 Jul 90</td>
<td>Mount</td>
<td>TB 6754</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

5. **MWO TITLE.** Enter the MWO abbreviated title.

6. **ORGANIZATION APPLYING MWO.** Enter the UIC or the name of the organization that applied the MWO, or determined that the MWO was previously applied. If an MWO is issued but not applied, enter the date the MWO must be applied by (black lead pencil). Erase the date when the MWO is applied.

**NOTE.** Enter the MWO as overdue on DA Form 222.
2408–30 if the MWO has not been applied by the due date.

7. NAME OR PID. The person who certifies the MWO application will enter their PID.

8. DATE. Enter the date (dd mmm yy) that the MWO was applied.

9. MANHOURS. Enter the actual manhours it took to apply the MWO, to the nearest tenth of an hour, including the technical inspection.

---

**Legend for Figure 5-2:**

Preparation Instructions (by block number and title) for completing a DA Form 2408–15, Historical Record for Aircraft, when used for Night Vision Goggles.

**Page of** . Enter the page number and the total number (black lead pencil) of pages.

1. AIRCRAFT MODEL. Enter the model of the NVGs. For example, AN/PVS-5 or AN/AVS-6(v)1.

2. NOMENCLATURE. Enter the item name, for example, Night Vision Goggles or ANVIS.

3. AIRCRAFT SERIAL NUMBER. Enter the serial number of the NVGs.

4. REMARKS.

   a. Record any significant historical data about the NVGs.

   b. The historical data entries should include complete data on SOU messages, TBs, major repairs, replacement of image intensifier tubes with serial numbers, one time inspections, and installation of the LIF kit when installed by AVIM.

5. ORGANIZATION LOCATION. Enter the name of the unit or organization and location of the unit that inspected, repaired, or overhauled the NVGs.
6. **DATE.** Enter the date (dd mmm yy) the action was completed.

7. **ENTRY NUMBER.** Manual Record keeping system, leave this block blank. ULLS-A users, entry is automatically entered.

8. **PID.** The person who verifies the maintenance action was completed or makes an entry will enter his or her Personal Identifier in this block.

```
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY</th>
<th>COMPONENT</th>
<th>QUANTITY</th>
<th>COMPONENT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory Cont</td>
<td>1</td>
<td>Hat, Sun C ca</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hand Pump</td>
<td>1</td>
<td>Pan, Frying</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Equalizer</td>
<td>1</td>
<td>Food Packet</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>First Aid Kit</td>
<td>1</td>
<td>Fuel, Comp</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Repair Kit</td>
<td>1</td>
<td>Insect Hat</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Signal, Mk-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distillation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Stg Bag</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailing Sponge</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailing Bucket</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing Kit</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ointment Sun</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oars, Wood</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compass</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knife Pocket</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**DA FORM 2408-21, DEC 91**

**LIFE RAFT INSPECTION RECORD**

For use of this form, see DA PAM 738-25, the propelling agency is DCS LOG

Figure 5-3A. Sample of a completed DA Form 2408–21, Life Raft Inspection Record (Illustration #1, Front)
**Legend for Figure 5-3B:**

*Preparation Instructions (by block number and title) for completion of a DA Form 2408-21, Life Raft Inspection Record*

**Page**. Enter the page number.

1. **RAFT TYPE.** Enter the type of raft.

2. **RAFT SERIAL NO.** Enter the raft serial number. If the raft does not have a serial number, enter the locally assigned identification number.

3. **ACCESSORY KIT TYPE.** Enter the type of accessory survival kit that is installed with the raft.

4. **KIT NO.** Enter the serial number or locally assigned identification number of the accessory kit.

5. **LOCATION.** Enter where the raft assembly is physically located (black lead pencil). For example, C-12A aircraft SN 7902468.

6. **RAFT MANUFACTURER.** Enter the manufacturer’s name.

7. **FLARE LOT NUMBER.** Enter the lot number of the installed flares.

8. **RADIO/PLB TYPE.** Enter the type of radio or PLB installed.

9. **SDU.** Enter the type of SDU installed.

10. **CO2 HYDRO TEST DUE.** Enter the date (dd mmm yy, black lead pencil) that the CO2 cylinder is due a hydrostatic test.

11. **RAFT DOM.** Enter the date (dd mmm yy) the raft was manufactured.

12. **DATE FLARES INSTALLED.** Enter the date (dd mmm yy, black lead pencil) the flares were installed in the raft.

13. **RADIO/PLB BATTERY EXPIRES.** Enter the date (dd mmm yy, black lead pencil) that the radio or PLB battery is due replacement.

14. **SDU BATTERY EXPIRES.** Enter the expiration date (dd mmm yy, black lead pencil) of the SDU battery.

---

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DATE INSPr</th>
<th>DATE DUE</th>
<th>INITIALSr</th>
<th>TYPE</th>
<th>DATE INSPr</th>
<th>DATE DUE</th>
<th>INITIALSr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Issue</td>
<td>19 Oct 89</td>
<td>19 Oct 89</td>
<td>T66754</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Day</td>
<td>16 Feb 90</td>
<td>19 Feb 90</td>
<td>T66754</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Test</td>
<td>27 Feb 90</td>
<td>28 Feb 90</td>
<td>T66754</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Day</td>
<td>16 Jun 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*REVERSE OF DA FORM 2408-21, DEC 91*

---

Figure 5-3B. Sample of a completed DA Form 2408–21, Life Raft Inspection Record (Illustration #2, Reverse)
15. **FIRE STARTER LOT/INSTALL.** Enter the lot number and date (dd mmm yy, black lead pencil) the fire starter is installed in the raft.

16. **DESLALTER DOM.** Enter the date (dd mmm yy, black lead pencil) the desalter kit was manufactured.

17. **FIRST AID KIT DUE.** Enter the date (dd mmm yy, black lead pencil) the first aid kits are due inspections.

18. **RATION DOM.** Enter the emergency rations date (dd mmm yy, black lead pencil) of manufacture.

19. **DISTRESS KIT LOT/INSTALL.** Enter the lot number and the date (dd mmm yy, black lead pencil) the distress markers were installed in the raft kit.

20. **INITIAL ISSUE DATE.** Enter the first issue date (dd mmm yy) of the raft.

21. **INSTALLED COMPONENTS RECORD**
   a. **COMPONENT**—List of all survival kit components installed in or attached to the raft.
   b. **QUANTITY**
   
   *REQ.*—Number of the components called for by the applicable supply publication.
   *AUTH.*—Number of the components authorized by the Commander.
   *O/H*—Number of the components on hand, that are in or attached to the raft.

22. **INSPECTION RECORD** (repeating fields)  
   (Reverse Side):
   a. **TYPE INSP.** Enter the type of inspection called for in TM 5–4220–202–14.
   b. **DATE INSP.** Enter date (dd mmm yy) the inspection in Block 22a was done.
   c. **DATE DUE.** Enter date (dd mmm yy) the next inspection is due.
   d. **INITIALS/PID.** The person who did the inspection will enter his or her PID.
Legend for Figure 5-4:
Preparation Instructions (by block number and title) for completion of a DA Form 2408–22, Helmet and Oxygen Mask/Connector Inspection Record

Page of . Enter the page number and total number (black lead pencil) of pages.

1. NAME. Enter the name of the person the helmet is assigned to. For float visor enter the unit's designated number for the visor.

2. RANK. Enter the rank of the person the helmet is assigned to. For float visor leave blank.

3. ORGANIZATION. Enter the individual's organization. For float visor leave blank.

4. ANNUAL FITTING. Enter the date (dd mmm yy) of the annual fitting of the helmet and oxygen mask. For float visor leave blank.

5. HELMET TYPE. Enter the helmet type. For float visor leave blank.

6. SIZE. Enter the helmet size. For float visor leave blank.

7. OXYGEN MASK TYPE. Enter the type of the oxygen mask if installed. Enter ANVIS for the visor type.

8. SIZE. Enter the size of oxygen mask. For float visor leave blank.

9. HELMET AND OXYGEN MASK/CONNECTOR INSPECTION RECORD.

a. INSPECTION DATE. Enter the date (dd mmm yy) of the last inspection of the helmet, visor, or oxygen mask.

b. REMARKS. Enter faults for either helmet, visor, and/or the oxygen mask. If no faults enter "Insp OK." Enter in block 10, if maintenance is needed.

c. NAME. The person who actually did the inspection will enter his or her PID.

d. NEXT INSPECTION DUE. Enter the date (dd mmm yy) the next inspection is due.
10. HELMET AND MASK REPAIR DATA.

a. DATE. Enter the date (dd mmm yy) the manufacture, visor installation, or repair was completed.

b. INITIALS. The person who did the maintenance work will enter his or her PID.

c. COMPONENT REPAIR/REPLACE. Enter corrective action taken and list all repair parts/components used during the repair(s).

11. TECHNICAL INSPECTION. (See TM 10–8415–206–13.)

a. DATE. Enter date (dd mmm yy) of the technical inspection.

b. INITIALS. The person doing the inspection will enter his or her PID.

c. REMARKS. Enter any significant historical information.

Figure 5-5. Sample of a completed DA Form 2408–23, Survival Radio/Emergency Locator Transmitter Inspection Record

Legend for Figure 5-5:
Preparation Instructions (by block number and title) for completion of a DA Form 2408–23, Survival Radio/Emergency Locator Transmitter Inspection Record

Page of . Enter the page number and total number (black lead pencil) of pages.
4. TECHNICAL MANUAL. Enter the reference TM number.

5. BATTERY TYPE. Enter the type of battery installed.

6. BATTERY SERIAL NUMBER. Enter the battery serial number (black lead pencil).

7. BATTERY LOT NUMBER. Enter the lot number (black lead pencil) of the battery installed.

8. BATTERY MANUFACTURE DATE. Enter the date (dd mmm yy, black lead pencil) the battery was manufactured.

9. INSPECTION RECORD. (See TM 11–5820–800–13 & P)

a. DUE DATE. Enter the date (dd mmm yy) the next inspection is due.

b. TYPE INSPECTION. Enter the type of inspection completed.

c. DATE INSPECTED. Enter the date the inspection was completed.

d. INITIALS. The person making the inspection will put his or her PID here.

e. REMARKS. Enter any significant historical information, including major repairs of the equipment.

Figure 5-6A. Sample of a completed DA Form 2408–24, Survival Kit Inspection and Maintenance Record (Illustration #1, Front)
**Legend for Figure 5-6B:**

*Preparation Instructions (by block number and title) for completion of a DA Form 2408–24, Survival Kit Inspection and Maintenance Record*

**NOTE.** If some items are not installed or blocks are not applicable (N/A), then leave blank.

**Page of** . Enter the page number and total number (black lead pencil) of pages.

1. **KIT TYPE.** Enter the type of survival kit. For example, Rigid Seat Survival Kit (RSSK), hot climate, cold climate, or over water.

2. **KIT NUMBER.** Enter the kit serial number or locally assigned identification number.

3. **LOCATION.** Enter the location of the kit (black lead pencil). For example, station 222, C-12A 7900468.

4. **AMMO LOT NO.** Enter the lot number of any installed ammunition.

<table>
<thead>
<tr>
<th>DUE DATE</th>
<th>INSPECTION DATE</th>
<th>FAULTS</th>
<th>CORRECTIVE ACTION</th>
<th>INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Jan 89</td>
<td>28 Jan 89</td>
<td>Outer Case Torn</td>
<td>Patched Case</td>
<td>JD 0987</td>
</tr>
<tr>
<td>27 May 89</td>
<td>27 May 89</td>
<td></td>
<td></td>
<td>JD 0987</td>
</tr>
<tr>
<td>24 Sep 89</td>
<td>24 Sep 89</td>
<td></td>
<td></td>
<td>JD 0987</td>
</tr>
<tr>
<td>23 Jan 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. **FLARE LOT NO AND FLARE TYPE.** Enter the lot number and flare type of installed flares.

6. **NATIONAL STOCK NUMBER.** Enter the NSN of the kit.

7. **RATION DOM.** Enter the earliest manufacture date (dd mmm yy) of the installed emergency rations. For example, for a group of 12 cans of rations with the manufacture dates ranging from 12 Jun 89 through 14 Mar 90, date would be 12 Jun 89.

8. **FIRST AID KIT DUE.** Enter the date (dd mmm yy) the first aid kit is due inspection. Determined by the earliest due date of an item in the first aid kit.

9. **AMMO SHELF LIFE.** Enter the expiration date (dd mmm yy) of installed ammunition.

10. **FLARE EXPIRATION DATE.** Enter the expiration date (dd mmm yy) of installed flares.

11. **INSTALLED COMPONENTS RECORD.**
**a. COMPONENT.** Enter the name of each item/component installed in the survival kit.

**b. QUANTITY REQ.** Enter the number of components called for in the supply publication that applies.

**AUTH.** Enter the number of components prescribed by the commander to perform the mission.

**O/H.** Enter the number of components that are on hand in the survival kit.

### 12. MAINTENANCE AND INSPECTION DATA. (Reverse Side)

**a. DUE DATE.** Enter the next inspection due date (dd mmm yy).

**b. INSPECTION DATE.** Enter the date (dd mmm yy) of the last inspection.

**c. FAULTS.** Enter the faults found during the last inspection.

**d. CORRECTIVE ACTION.** Enter the actions taken to correct the faults.

**e. INITIALS.** The person performing the inspection and/

<table>
<thead>
<tr>
<th>1. NAME</th>
<th>2. RANK</th>
<th>3. LOCATION</th>
<th>4. SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preston, Warren E. III</td>
<td>SGT</td>
<td>Co. F 224th Avn Bn</td>
<td>LG</td>
</tr>
</tbody>
</table>

**5. INSTALLED COMPONENT RECORD**

<table>
<thead>
<tr>
<th>NOMENCLATURE</th>
<th>REQ</th>
<th>AUTH</th>
<th>O/H</th>
<th>TYPE</th>
<th>SERIAL NUMBER</th>
<th>BATTERY DOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tourniquet</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>PRC-90</td>
<td>F03087</td>
<td>Dec 93</td>
</tr>
<tr>
<td>Linnatic Compass</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bag, Water</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium Fire Bar</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival Blanket</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pocket Knife</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distress Marker Light</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-119 Foilage Penetrator</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holster</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaling Mirror</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Aid Kit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whistle Plastic</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knife, Hunting</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firestarter, Sparklite</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insect Repellent</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM 55-1680-351-10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly Sheet</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Aspirin</td>
<td>45291</td>
<td>9/96</td>
</tr>
<tr>
<td>Book,Hot,WCT Environment</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Doxycycline</td>
<td>5J145</td>
<td>7/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Imodium</td>
<td>93A265</td>
<td>1/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Povidone-Iodine</td>
<td>X197</td>
<td>12/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water Tablets</td>
<td>08</td>
<td>3/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfacetamide 0int</td>
<td>3076</td>
<td>8/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Betadine Swab</td>
<td>786</td>
<td>11/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skin Closure 1x6&quot;</td>
<td>SH51</td>
<td>1/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bandage 3/4 x3&quot;</td>
<td></td>
<td>8/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glove Patient Exam</td>
<td>11505108</td>
<td>5/99</td>
</tr>
</tbody>
</table>

**Figure 5-7A. Sample of a completed DA Form 2408-25, Mesh Net Survival Vest Inspection Record (Illustration #1, Front)**
Legend for Figure 5-7B:
Preparation Instructions (by block number and title) for completion of a DA Form 2408–25, Mesh Net Survival Vest Inspection Record

NOTE. If some items are not installed or blocks are not applicable (N/A), leave blank.

Page of . Enter the page number and total number (black lead pencil) of pages.

1. NAME. Enter the name of the person to whom the vest is issued.

2. RANK. Enter the rank of the person the vest is issued to.

3. LOCATION. Enter where the survival vest is located. For example, the unit to which the aircraft is assigned.

4. SIZE. Enter the size of the survival vest.

5. INSTALLED COMPONENT RECORD.

<table>
<thead>
<tr>
<th>TYPE OF INSPECTION</th>
<th>DATE DUE</th>
<th>DATE COMPLETED</th>
<th>INITIALS OR PID</th>
<th>TYPE OF INSPECTION</th>
<th>DATE DUE</th>
<th>DATE COMPLETED</th>
<th>INITIALS OR PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Issue</td>
<td></td>
<td>03 Jan 96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Day</td>
<td>03 May 96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. NOMENCLATURE. Enter the name of each item/ component installed in or attached to the vest.

b. REQ. Enter number of items called for by supply manuals that apply.

c. AUTH. Enter number of items prescribed by the Commander.

d. ON HAND. Enter the number of the items presently installed in the vest.

6. RADIO AND BATTERY.

a. TYPE. Enter type of radio, light marker, or other items installed in the vest with batteries.

b. SERIAL NUMBER. Enter serial number of radio, light marker, or other items and the year of manufacture of the equipment.

c. BATTERY DOM. Enter the date (dd mmm yy) of manufacture of the installed battery.
7. **WEAPON/AMMO.**
   
a. **TYPE.** Enter type weapon/ammo installed in survival vest.

b. **SERIAL NUMBER.** Enter serial number of the weapon installed.

c. **AMMO LOT NO.** Enter the Lot Number and date (dd mmm yy) of manufacture of the ammo.

8. **PYROTECHNICS.**
   
a. **Type.** Enter the type of pyrotechnics installed in survival vest. For example, signal kit, M1-185, M-13, and so on.

b. **LOT NUMBER/DATE.** Enter lot number of the pyrotechnics and date (dd mmm yy) of manufacture.

c. **DOI.** Enter date (dd mmm yy) of issue. If not available, use date (dd mmm yy) the pyrotechnics were installed in the vest.

9. **FIRST AID COMPONENTS.**
   
a. **TYPE.** Enter the type of each medical item in the first aid kit.

b. **LOT NUMBER.** Enter the lot number of each medical item in the first aid kit.

c. **EXPIRATION DATE.** Enter the expiration date of each medical item in the first aid kit.

   
a. **TYPE OF INSPECTION.** Enter type of inspection performed. For example, initial, modification, 120 days, and so on.

b. **DATE DUE.** Enter the date (dd mmm yy) the inspection is due.

c. **DATE COMPLETED.** Enter the date (dd mmm yy) the inspection is completed.

d. **INITIALS OR PID.** Enter the PID of the person who completed the inspection.

---

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SERIAL NUMBER</th>
<th>LOCATION</th>
<th>FUNCTIONAL TEST DUE</th>
<th>DATE PACKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFU-10/P</td>
<td>2233</td>
<td>7924789</td>
<td>23 Jan 90</td>
<td>24 Sep 89</td>
</tr>
<tr>
<td>LEFT CELL SERIAL NUMBER: 11148</td>
<td>LEFT CELL MANUFACTURER: Jetsam Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIGHT CELL SERIAL NUMBER: 2235E</td>
<td>RIGHT CELL MANUFACTURER: Jetsam Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Figure 5-8A. Sample of a completed DA Form 2408–26, Life Preserver Inspection Record (Illustration #1, Front)**
### Preparation Instructions (by block number and title) for completion of a DA Form 2408–26, Life Preserver Inspection Record

1. **TYPE.** Enter type of flotation unit, for example, LPU-2.

2. **SERIAL NUMBER.** Enter the serial number of the life preserver. If not available print the locally assigned identification number and the date (dd mmm yy) of manufacture.

3. **LOCATION.** Enter the location of the life preserver, for example, individual aircraft or storage area.

4. **FUNCTIONAL TEST DUE.** Enter the date (dd mmm yy, black lead pencil) CO2 inflation test is due per TM 5–4220–202–14.

5. **DATE PACKED.** Enter the date (dd mmm yy, black lead pencil) the flotation unit was packed.

6. **LEFT CELL SERIAL NUMBER.** Enter serial number of the left cell.

7. **LEFT CELL MANUFACTURER.** Enter the name of the manufacturer for the left cell.

8. **RIGHT CELL SERIAL NUMBER.** Enter serial number of the right cell.

9. **RIGHT CELL MANUFACTURER.** Enter the name of the manufacture for the right cell.

10. **ISSUE RECORD.**
   a. **DATE ISSUED.** Enter the date (dd mmm yy) of issue to the current user.
   b. **LOCATION.** Enter where life preserver cells were tested and checked.

11. **INSPECTION RECORD.** (See TM 5–4220–202–14)
   a. **DUE DATE.** Enter the date (dd mmm yy) the life preserver's next inspection is due.
   b. **DATE INSPECTED.** Enter the date (dd mmm yy) of the last inspection.
c. INITIALS OR PID. The person marking the inspection will enter his or her PID.

12. REMARKS. (Reverse Side.) Enter any significant historical data, including major repair of the life preserver, date of completion, and the name and location of the activity that did the maintenance work. Person making the entry will enter his or her PID, organization, and location.
**LIFE PRESERVER DATA**

For use of this form see DA PAM 738–751; the proponent agency is DCSLOG.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TYPE</td>
<td>LPU–10/P</td>
</tr>
<tr>
<td>2. ID NO</td>
<td>22333</td>
</tr>
<tr>
<td>3. MANUFACTURER AND DATE</td>
<td>Goodyear 09 Apr 88</td>
</tr>
<tr>
<td>a. PACK AND HARNESS</td>
<td></td>
</tr>
<tr>
<td>b. R CELL</td>
<td>S/N: 2235E MFG: Jetsam</td>
</tr>
<tr>
<td>c. L CELL</td>
<td>S/N: 11148 MFG: Jetsam</td>
</tr>
<tr>
<td>4. REMARKS</td>
<td>24 Sep 89 Harness Sewn</td>
</tr>
<tr>
<td>5. CO2 INFLATION TEST</td>
<td></td>
</tr>
<tr>
<td>TESTED BY</td>
<td>RJ 7542</td>
</tr>
<tr>
<td>DATE</td>
<td>24 Sep 89</td>
</tr>
</tbody>
</table>

**DA FORM 2408-27, DEC 91**

EDITION OF DEC 94 IS OBSOLETE.

---

**Figure 5-9A. Sample of a completed DA Form 2408–27, Life Preserver Data (Illustration #1, Front)**
Legend for Figure 5-9B:
Preparation Instructions (by block number and title) for completion of a DA Form 2408–27, Life Preserver Data.

1. **TYPE.** Enter the type of flotation unit. For example, LPU-2.

2. **ID NO.** Enter the serial number of the life preserver. If not available, print the locally assigned identification number.

3. **MANUFACTURER AND DATE.** Enter the manufacturer and date (dd mmm yy) of manufacture.

   a. **PACK AND HARNESS.** Enter the type of pack and harness that applies.

   b. **R CELL S/N — MFG.** Enter serial number of the right cell, name of manufacturer, and date of manufacture.

   c. **L CELL S/N — MFG.** Enter serial number of the left cell, name of manufacturer, and date of manufacture.

4. **REMARKS.** Enter any significant historical data, such as, harness repair, modification, and so on.

5. **CO2 INFLATION TEST.**

   **TESTED BY.** The person performing the inflation test will sign his or her name.

   **DATE.** Enter the date (dd mmm yy) the inflation test was done.

6. **INSPECTION RECORD (Reverse Side).**

   a. **DATE INS.** Enter the date (dd mmm yy) the life preserver was inspected.

   b. **DATE DUE.** Enter the date (dd mmm yy) the next inspection is due on the life preserver.

   c. **INSPECTOR'S SIGNATURE AND RANK.** The inspector who did the inspection will enter his or her PID and rank.
**Table: Oxygen Console Service Record**

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYSPN</th>
<th>DATE CERT SVC RL</th>
<th>PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>02 Jan 89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Accessories**

<table>
<thead>
<tr>
<th>COMPONENT AND SERIAL NUMBER</th>
<th>REQ</th>
<th>AUTH</th>
<th>OAH</th>
<th>INSPI CYC</th>
<th>TIME CHG DUE</th>
<th>LOCAL USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Mask</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>30 Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Hose</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>30 Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator S/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2224</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td>15 Mar 89</td>
<td></td>
</tr>
<tr>
<td>2225</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td>15 Mar 89</td>
<td></td>
</tr>
<tr>
<td>2228</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td>30 Jun 89</td>
<td></td>
</tr>
<tr>
<td>2230</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td>30 Jun 89</td>
<td></td>
</tr>
<tr>
<td>2234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td>05 Sep 89</td>
<td></td>
</tr>
<tr>
<td>2235</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td>05 Sep 89</td>
<td></td>
</tr>
<tr>
<td>Tiedown Strap</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>30 Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30 Day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10A. Sample of a completed DA Form 2408–28, Oxygen Console Service Record (Illustration #1, Front)
Figure 5-10B. Sample of a completed DA Form 2408–28, Oxygen Console Service Record (Illustration #2, Reverse)

Legend for Figure 5-10B:
Preparation Instructions (by block number and title) for completion of a DA Form 2408–28, Oxygen Console Service Record

1. CONSOLE TYPE OR MODEL. Enter the console model number, name, or type.

2. PART NUMBER. Enter the console part number, from the data plate, on the console.

3. SERIAL NUMBER. Enter the console serial number, from the data plate, on the console.

4. OXYGEN SERVICE.

   a. STATUS. Enter the status; for example, red diagonal, Red "X," and so on. When the discrepancy is cleared the person doing the work will place last name initial over status symbol. When the status symbol is a red "X" or circle red "X" the person that makes the quality control inspection will place last name initial over the status symbol.

   b. SYS-PSI. Enter the pounds per square inch reading after servicing.

   c. DATE CERT SVC BL. Enter date (dd mmm yy) the console is filled to capacity and in a totally serviceable condition.

   d. PID. The person checking or performing oxygen service will enter his or her PID.

5. OXYGEN CYLINDER HYDROSTATIC TEST DUE. Enter the date (dd mmm yy, black lead pencil) the oxygen cylinder(s) must be removed for hydrostatic test.

6. ACCESSORIES.

   a. COMPONENT AND SERIAL NUMBER. List all components and their serial numbers for the oxygen system.

   b. REQ. Enter the number of components called for by the supply manual.

   c. AUTH. Enter the number called for by the Commander.

   d. O/H. Enter the number of components presently on hand.
**e. INSPECT CYCLE.** Enter the frequency of the inspection cycle, for example, 30 day (see TM 55–1660–243–12).

**f. TIME CHG DUE.** Enter the date (dd mmm yy) the component’s operational time will expire and will be removed from service. If N/A leave blank.

**g. LOCAL USE.** Use this column as directed locally.

**7. INSPECTION DATA.** (Reverse Side) (See TM 55–1660–243–12).

**a. TYPE INSPECT/TEST.** Enter the type of inspection or test. For example, periodic, oxygen flow test, or leak test.

**b. DATE INSPECT.** Enter the date (dd mmm yy) of inspection or test completion.

**c. DATE DUE.** Enter the date (dd mmm yy) the next inspection or test is due.

**d. INITIALS OR PID.** The person who did the inspection or test will enter his or her PID.

**8. REPAIR/MWO DATA.**

**a. DISCREPANCY.** Enter a brief description of the fault or MWO to be applied.

**b. DATE CORR.** Enter the date (dd mmm yy) the fault was fixed and cleared, or MWO was applied.

**c. INITIALS OR PID.** The person who did the maintenance work or the MWO and form entries, will enter his or her PID.

---

<table>
<thead>
<tr>
<th>1. TYPE</th>
<th>2. SERIAL NUMBER</th>
<th>3. LOCATION</th>
<th>4. LEAK TEST DUE DATE</th>
<th>5. SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWU 16/P</td>
<td>2211</td>
<td>7.21.0812</td>
<td>10 Oct 89</td>
<td>X-Large</td>
</tr>
</tbody>
</table>

**DATE DUE**  | **DATE INSPECTION** | **INITIALS/PID** | **FAULT** | **CORRECTIVE ACTION** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Jan 89</td>
<td>03 Jan 89</td>
<td>JD 0987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 May 89</td>
<td>22 May 89</td>
<td>JD 0987</td>
<td>Right Sleeve Torn</td>
<td>Patched Sleeve</td>
</tr>
<tr>
<td>10 Oct 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 5-11A. Sample of a completed DA Form 2408–29, Anti-Exposure Coveralls Inspection Record (Illustration #1, Front)**
### Legend for Figure 5-11B:

Preparation Instructions (by block numbers and title) for completion of a DA Form 2408-29, Anti-Exposure Coveralls Inspection Record.

1. **TYPE.** Enter the type of anti-exposure coveralls.

2. **SERIAL NUMBER.** Enter the serial number. If no serial number enter the locally assigned identification number.

3. **LOCATION.** Enter the name (black lead pencil) of the air crewmember to whom the equipment is assigned. In case of 16/P, enter aircraft serial number where coveralls will be used. Aircraft serial numbers will have seven numerical digits.

4. **LEAK TEST DUE DATE.** Enter the date (dd mmm yy, black lead pencil) the next leak test is due.

5. **SIZE.** Enter the coverall's size. In case of 16/P, enter "quick donning."

6. **INSPECTION.** (See TM 10-8475-200-13 and TM 10-8475-202-13.)
   - a. **DATE DUE.** Enter the date (dd mmm yy) the inspection is due.
   - b. **DATE INS.** Enter the date (dd mmm yy) the inspection was completed.
   - c. **INITIALS/PID.** The person who did the inspection will enter his or her PID.

7. **MAINTENANCE DATA.**
   - a. **FAULT.** Enter all faults found during inspections or tests.
   - b. **CORRECTIVE ACTION.** Enter corrective actions to fix the faults.

8. **REMARKS.** (Reverse Side). Enter any significant historical data, including major repair of coveralls, date of completion, and significant historic events. The person entering the remarks will enter the name and location of the activity that did the maintenance work, and enter his or her PID, organization, and location.

---

**Figure 5-11B. Sample of a completed DA Form 2408–29, Anti-Exposure Coveralls Inspection Record (Illustration #2, Reverse)**

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 May 89</td>
<td>Right sleeve of coveralls has a &quot;T&quot; shaped tear, one inch by one inch long.</td>
</tr>
<tr>
<td></td>
<td>Sleeve repaired by applying a two inch square patch. JA 1234, 228th Trans. Co.</td>
</tr>
<tr>
<td>Ft. Hood, TX</td>
<td></td>
</tr>
</tbody>
</table>
**Figure 5-12A. Sample of a completed DA Form 2408–30, NVG Inspection and Maintenance Record (Illustration #1, Front)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature</td>
<td>ANVIS AN/AVS-6V1</td>
</tr>
<tr>
<td>Model</td>
<td>2641A</td>
</tr>
<tr>
<td>SN</td>
<td>5855-01-138-4779</td>
</tr>
<tr>
<td>UIC</td>
<td>WOY950</td>
</tr>
<tr>
<td>6. Next Inspections Due</td>
<td>90 Day PMCS Due 23 May 93, 180 Day Service Due 21 Aug 93</td>
</tr>
<tr>
<td>Part I - Fault Information</td>
<td>Part II - Correcting Information</td>
</tr>
<tr>
<td>Status</td>
<td>04 Feb 93, 0800</td>
</tr>
<tr>
<td>Date</td>
<td>22 Feb 93, 1320 Hrs</td>
</tr>
<tr>
<td>Sys</td>
<td>Action Code</td>
</tr>
<tr>
<td>No</td>
<td>WUC</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td></td>
</tr>
<tr>
<td>Action Service Complete</td>
<td>SEE DA FORM 2407</td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>A/C HRS</td>
<td>22 Feb 93, 1330</td>
</tr>
<tr>
<td>When Disc</td>
<td>22 Feb 93, 1330</td>
</tr>
<tr>
<td>How Rec</td>
<td>PID</td>
</tr>
<tr>
<td>Mal Eff</td>
<td>HOURS</td>
</tr>
<tr>
<td>WUC</td>
<td>PID</td>
</tr>
<tr>
<td>CMH</td>
<td>CMH</td>
</tr>
<tr>
<td>HRH</td>
<td>HRH</td>
</tr>
</tbody>
</table>

**DA Form 2408-30, Dec 91**

NVG Inspection and Maintenance Record

For use of this form, see DA Pam 738-751. The preparer agency is OCS/OG.
Figure 5-12B. Sample of a completed DA Form 2408–30, NVG Inspection and Maintenance Record (Illustration #2, Reverse)
Legend for Figure 5-12C:
Preparation Instructions (by block title) for completion of a DA Form 2408-30, NVG Inspection and Maintenance Record

1. **NOMENCLATURE.** Enter the item name, for example, NVG.

2. **MODEL.** Enter the model number, for example, AN/PVS-5A.

3. **SERIAL NUMBER.** Enter the serial number of the item.

4. **NSN.** Enter the National Stock Number of the item.

5. **UIC.** Enter the Unit Identification Code for the unit or activity that maintains the item.

6. **NEXT INSPECTIONS DUE.** Enter the type of inspections and the next date (black lead pencil) due for each inspection. The three month PMCS due date will be changed only if a three month PMCS is performed early, which may require a second three month PMCS to be performed inside the scheduled six month service window. The 6-month service window is closed upon completion of the service and a new one is started. The use of transparent tape is authorized and must be of the type you can print on with a pencil.

**PART I—FAULT INFORMATION**

**STATUS.** Enter the status symbol that applies to the fault or maintenance action in the FAULT/REMARKS section. Once a status symbol is in the STATUS block, it will not be erased or changed even if in error (para 1-8). The person who corrects a red "dash" or red diagonal fault will enter his or her last name initial over the status symbol. A red "X" or circled red "X" status symbol will be initialed (blue/black ink ballpoint pen) over by a TI.

**SYS.** Leave blank at this time.

**DATE.** Enter the date (dd mmm yy) the fault was discovered or a remark is made.

**NO.** Leave blank at this time.

**TIME.** Enter the time of day (24-hour clock) the fault was discovered, for example, 0930 or 1425.

**PID.** Leave blank at this time.

**FAULT/REMARK.** Enter a short description of the fault or maintenance, checks, services, or other inspections. The person who makes the entry will sign his or her
name behind the entry. If more space is needed to enter a fault/remark then enter "Continued" on the last line of the FAULT/REMARK section and continue in the next open FAULT/REMARK section.

A/C HRS. Leave blank at this time.

WHEN DISC. Leave blank at this time.

HOW REC. Leave blank at this time.

MAL EFF. Leave blank at this time.

WUC. Leave blank at this time.

W.O. Enter the work order number from the DA Form 2407 or PC work request. If none, leave blank.

REQ. Enter the supply requisition number if a part is ordered. If none, leave blank.

OTHER. Leave blank at this time.

PART II—CORRECTING INFORMATION.

DATE. Enter date (dd mmm yy) the fault was corrected.

TIME. Enter the time (24-hour clock) the fault was corrected, for example, 0930 or 1425.

HRS. Leave blank at this time.

ACTION CODE. Leave blank at this time.

WUC. Leave blank at this time.

ACTION. Enter a short description of the action taken to correct the fault or maintenance, checks, services, or other inspections. The person who corrects the fault or completes the checks, services or other inspections will sign his or her name. Examples of what can be entered are:


b. 120 day visor insp due 28 Oct 91 — "Compl," "Insp compl," and so forth.

c. Distortion in left tube — "Distortion evaluation completed, released for flight."

PID. Leave blank at this time.

HOURS. Leave blank at this time.

PID. Leave blank at this time.

CMH. Leave blank at this time.

OMH. Leave blank at this time.

FMH. Leave blank at this time.

DMH. Leave blank at this time.

TIPID. Use if the fault is a red "X" or circled red "X," otherwise leave blank. The TI that verifies the corrective action and completion of the MOC will enter his or her signature in this block.

TI MANHOURS. Leave blank at this time.

7. NVG OPERATIONAL HOURS. (Reverse Side)

a. CURRENT. Leave blank at this time, unless the MACOM has directed the NVG usage time be tracked.

b. TODAY. Leave blank at this time, unless the MACOM has directed the NVG usage time be tracked.

c. TOTAL. Leave blank at this time, unless the MACOM has directed the NVG usage time be tracked.
Appendix A
References

Section I
Required Publications

AR 12–12
Processing Discrepancy Reports Against Foreign Military Sales Shipments (cited in para 3–2).

AR 95–1
Army Aviation Flight Regulations (cited in paras 2–3 and 3–2).

AR 95–3

AR 700–138
Army Logistics Readiness and Sustainability (cited in para 3–11).

AR 750–1
Army Material Maintenance Policy and Retail Maintenance Operations (cited in paras 1–1, 3–11, and 4–14).

AR 750–2
Army Material Maintenance Wholesale Operations (cited in paras 1–1, and 3–2).

TB 1–1500–341–01

TB 43–0002–3
Maintenance Expenditure Limits for Army Aircraft (cited in para 3–8).

TB 43–0106
Aeronautical Equipment Army Oil Analysis Program (cited in para 4–14).

TM 1–1500–328–23

Section II
Related Publications

A related publication is merely a source of additional information. The user does not have to read it to understand this publication.

AR 25–55
The Department of the Army Freedom of Information Act.

AR 310–25
Dictionary of United States Army Terms.

AR 310–50
Authorized Abbreviations and Brevity Codes.

AR 380–5
Department of the Army Information Security Program.

AR 385–40
Accident Reporting and Records.

AR 570–2
Manpower Requirements Criteria.

AR 672–20
Incentive Awards.

AR 700–4
Logistics Assistance Program.

AR 700–139
Army Warranty Program Concept and Policies.

AR 710–1
Centralized Inventory Management of the Army Supply System.

AR 710–2
Supply Policy Below the Wholesale Level.

AR 710–3
Asset Transaction Reporting System.

AR 725–50
Requisition, Receipt, and Issue System.

AR 735–5
Policies and Procedures for Property Accountability.

AR 735–11–2
Reporting of Item and Packaging Discrepancies.

AR 750–10
Modification of Materiel and Issuing Safety-of-Use Messages and Commercial Vehicle Safety Recall Campaign Directions.

AR 750–43
Army Test, Measurement, and Diagnostic Equipment Calibration and Repair Support Program (TMDE).

DA Pam 385–40
Safety: Aircraft Accident Investigation and Reporting.

DA Pam 700–126
Basic Functional Structure.

DA Pam 710–2–1

DA Pam 738–750
The Army Maintenance Management System (TAMMS).

DOD 4160.21–M

TB 43–0001
Equipment Improvement Report and Maintenance Digest.

TB 750–25

TM 10–8415–206–12&P
Operator, Organizational and Direct Support Maintenance Manual (Including Repair Parts and Special Tools List) Helmet, Flying, Protective (Model SPH-4, Regular) (NSN 8415-00-144-4981) and (Model SPH-4, Extra Large) (NSN 8415-00-144-4985).

TM 10–8475–200–13
Use, Inspection, Fitting and Maintenance Inspections for Anti-Exposure Assembly, Type CWU-21/P (TO 14P3.5.8).

TM 10–8475–202–13
Operation, Service and Maintenance Inspections for Quick Donning Anti-Exposure Flying Coverall, Type CWU-16/P.
TM 11–5820–640–15

TM 11–5820–767–12
Operators and Organizational Maintenance Manual: Radio Set AN/URC-90 (NSN 5820-00-832-9158).

TM 11–5820–800–13&P
Operators and Organizational Maintenance Manual (Including Repair Parts and Special Tools List): Radio Set, AN/PRC-90 (NSN 5820-00-782-5308)

TM 11–5855–263–23&P
Aviation Unit and Direct Support Maintenance Manual, Aviation Night Vision Imaging System AN/AVS-6(V)1 and AN/AVS-6(V)2.

TM 11–5855–238–23&P

TM 38–L09–11
Functional Users Manual for Maintenance Reporting and Management (MRN).

TM 55–1500 and TM 55–1520 series
Maintenance Inspection Checklist.

TM 55–1520–342–23
Army Aviation Maintenance Engineering Manual For Weight and Balance.

TM 55–1660–247–12
Operation, Fitting, Inspection and Maintenance with Illustrated Parts Breakdown for MBU-12P Pressure-Demand Oxygen Mask Part No. 834-75-01 (NSN 1660-01-081-9157LS), 834-75-02 (NSN 1660-01-073-7595LS), 834-75-03 (NSN 1660-01-073-7596LS), AND 834-75-04 (NSN 1660-01-081-2366LS) (to 15X5-3-6).

TM 55–1680–317–23&P
Aviation Unit and Aviation Intermediate Manual with Repair Parts and Special Tools List for Army Aircraft Survival Kits.

AISM 25–L3P–AWD–ZZZ–EM

Section III
Prescribed Forms

DA Form 2402
Exchange Tag. (Prescribed in para 3–5.)

DA Form 2405
Maintenance Request Register. (Prescribed in para 3–10.)

DA Form 2407
Maintenance Request. (Prescribed in para 3–11.)

DA Form 2407–1
Maintenance Request Continuation Sheet. (Prescribed in para 3–11.)

DA Form 2408
Equipment Log Assembly. (Prescribed in para 2–3.)

DA Form 2408–4–1
Weapon Record Data. (Prescribed in para 2–5.)

DA Form 2408–4–2
Weapon Sightning Data (OH-58D). (Prescribed in Para 2–6.)

DA Form 2408–4–3
Weapon Sightning Data (AH-64A). (Prescribed in Para 2–7.)

DA Form 2408–5
Equipment Modification Record. (Prescribed in para 4–3 and 5–3.)

DA Form 2408–5–1
Equipment Modification Record (component). (Prescribed in para 4–4.)

DA Form 2408–12
Army Aviator’s Flight Record. (Prescribed in para 2–8.)

DA Form 2408–13
Aircraft Status Information Record. (Prescribed in para 2–9.)

DA Form 2408–13–1
Aircraft Inspection and Maintenance Record. (Prescribed in para 2–10.)

DA Form 2408–13–2
Related Maintenance Actions Record. (Prescribed in para 2–11.)

DA Form 2408–13–3
Aircraft Technical Inspection Worksheet. (Prescribed in para 3–9.)

DA Form 2408–14–1
Uncorrected Fault Record (Aircraft). (Prescribed in para 2–12.)

DA Form 2408–15
Historical Record for Aircraft. (Prescribed in paras 4–5 and 5–4.)

DA Form 2408–15–2
Aircraft Vibration Record. (Prescribed in para 4–6.)

DA Form 2408–16
Aircraft Component Historical Record. (Prescribed in para 4–7.)

DA Form 2408–16–1
History Recorder, Component, Module Record. (Prescribed in para 4–8.)

DA Form 2408–17
Aircraft Inventory Record. (Prescribed in para 4–9.)

DA Form 2408–18
Equipment Inspection List. (Prescribed in para 2–13.)

DA Form 2408–19
Aircraft Engine Turbine Wheel Historical Record. (Prescribed in para 4–10.)

DA Form 2408–19–1
T53/T55 Turbine Engine Analysis Check Record. (Prescribed in para 4–11.)

DA Form 2408–19–2
T700 Series Turbine Engine Analysis Check Record. (Prescribed in para 4–12.)

DA Form 2408–19–3
Engine Component Operating Hours Record. (Prescribed in Para 4–13.)

DA Form 2408–20
Oil Analysis Log. (Prescribed in para 4–14.)

DA Form 2408–21
Life Raft Inspection Record. (Prescribed in para 5–5.)
DA Form 2408–22
Helmet and Oxygen Mask/Connector Inspection Record. (Prescribed in para 5–6.)

DA Form 2408–23
Survival Radio/Emergency Location Transmitter Inspection Record. (Prescribed in para 5–7.)

DA Form 2408–24
Survival Kit Inspection and Maintenance Record. (Prescribed in para 5–8.)

DA Form 2408–25
Mesh Net Survival Vest Inspection Record. (Prescribed in para 5–9.)

DA Form 2408–26
Life Preserver Inspection Record. (Prescribed in para 5–10.)

DA Form 2408–27
Life Preserver Data. (Prescribed in para 5–11.)

DA Form 2408–28
Oxygen Console Service Record. (Prescribed in para 5–12.)

DA Form 2408–29
Anti-Exposure Coveralls Inspection Record. (Prescribed in para 5–13.)

DA Form 2408–30
NVG Inspection and Maintenance Record. (Prescribed in para 5–14.)

DA Form 2408–31
Aircraft Identification Card. (Prescribed in para 2–4.)

DA Form 2408–33–R
Meter Tracked Component Record. (Prescribed in para 4–15.)

DA Form 2410
Component Removal and Repair/Overhaul Record. (Prescribed in para 3–13 through 3–19.)

DD Form 1574
Serviceable Tag-Materiel (yellow). (Prescribed in para 3–22.)

DD Form 1574–1
Serviceable Label-Materiel (yellow). (Prescribed in para 3–22.)

DD Form 1575
Suspended Tag-Materiel (brown). (Prescribed in para 3–23.)

DD Form 1575–1
Suspended Label-Materiel. (Prescribed in para 3–23.)

DD Form 1576
Test/Modification Tag-Materiel (blue). (Prescribed in para 3–24.)

DD Form 1576–1
Test/Modification Label-Materiel. (Prescribed in para 3–24.)

DD Form 1577
Unserviceable (Condemned) Tag-Materiel. (Prescribed in para 3–25.)

DD Form 1577–1
Unserviceable (Condemned) Label-Materiel. (Prescribed in para 3–25.)

DD Form 1577–2
Unserviceable (Reparable) Tag-Materiel (green). (Prescribed in para 3–26.)

DD Form 1577–3
Unserviceable (Reparable) Label-Materiel. (Prescribed in para 3–26.)

DD Form 2332
Materiel Deficiency Report. (Prescribed in para 3–6.)

SF Form 368
Product Quality Deficiency Report (Prescribed in para 3–8.)

Section IV
Referenced Forms

DA Form 209
Delay, Referral or Follow-Up Notice.

DA Form 1687
Notice of Delegation of Authority-Receipt for Supplies.

DA Form 2028
Recommended Changes to Publications and Blank Forms.

DA Form 2765–1
Request for Issue or Turn-In.

DD Form 173/3
Joint Message Form (OCR).

DD Form 365–3
Chart C-Basic Weight and Balance Record.

DD Form 365–4
Weight and Balance Clearance Form F-Transport/Tactical.

DD Form 1348–1A

DD Form 1348–2

DD Form 1896
Jet Fuel Identaplate.

DD Form 1897
AVGAS Identaplate.

SF Form 364
Report of Discrepancy.

Appendix B
Nuclear, Biological, and Chemical Detection-Decontamination Documentation Procedures
B–1. When aircraft, aviation-associated equipment, or other aeronautical equipment is suspected to have been contaminated with nuclear, biological, or chemical materiel the following steps will be taken to decontaminate the equipment (see table B-1).
Table B–1
Legend: Nuclear, Biological, and Chemical Detection–Decontamination Documentation Procedures

<table>
<thead>
<tr>
<th>STEP</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An aircraft or aeronautical equipment is suspected to have been contaminated.</td>
<td>A security police team will establish a cordon around the aircraft.</td>
</tr>
<tr>
<td>2</td>
<td>Isolated parking is necessary. A security police team will secure the area and the organization section.</td>
<td>The pilot will advise the tower of the known or suspected contamination. The pilot will request that isolated parking be provided for the aircraft.</td>
</tr>
<tr>
<td>3</td>
<td>The ground crew and maintenance personnel will not approach the aircraft or begin servicing or maintenance until after the aircraft is completely inspected and decontaminated if necessary.</td>
<td>The detection team will perform detection per prescribed procedures to determine the type, amount, and location of contamination.</td>
</tr>
<tr>
<td>4</td>
<td>The detection team supervisor will direct maintenance personnel to enter the circled Red N, B or C on the DA Form 2408-13 and 2408-13-1 and describe the extent of the contamination.</td>
<td>If an aircraft component or part cannot be decontaminated, the component or part will be removed and disposed of as contaminated waste.</td>
</tr>
<tr>
<td>5</td>
<td>Contamination occurs with a chemical agent.</td>
<td>A special entry will be made on the DA Form 2408-18 to show that a special detection reinspection is needed at the next three scheduled hourly periodic, phase, or other scheduled inspections.</td>
</tr>
<tr>
<td>6</td>
<td>The aircraft has been decontaminated.</td>
<td>The decontamination team chief will enter the corrective action in the Correcting Information block of the DA Form 2408-13-1 and will enter his or her signature following this entry. The team chief will then place his or her last name initial over the symbol in the status block of the Fault Information block on the DA Form 2408-13-1 that applies.</td>
</tr>
<tr>
<td>7</td>
<td>The local commander will establish necessary administrative procedures related to accomplishing decontamination of the aircraft.</td>
<td>Maintenance personnel will perform corrosion control as called for, since some decontaminates are highly corrosive.</td>
</tr>
<tr>
<td>8</td>
<td>The aircraft has been decontaminated.</td>
<td>Maintenance personnel will make an entry on the DA Form 2408-15 to describe the type and extent of contamination. The unclassified designator of the contaminant involved and the decontaminates used will be included.</td>
</tr>
<tr>
<td>9</td>
<td>Assurance will be provided that needed decontamination is accomplished and verified by qualified personnel.</td>
<td>Controls will be set up to assure that unauthorized personnel do not enter the isolated area until needed decontamination has been completed.</td>
</tr>
<tr>
<td>10</td>
<td>Procedures will be set up to return the aircraft to service after decontamination has been performed.</td>
<td>Plans will be made to establish isolated areas.</td>
</tr>
<tr>
<td>11</td>
<td>Plans and procedures will be made to provide maintenance guidance and/or assistance to the decontamination team.</td>
<td>Assurance will be provided that needed decontamination is accomplished and verified by qualified personnel.</td>
</tr>
</tbody>
</table>

Appendix C
Supply Condition Codes
C–1. The supply condition codes are to describe the condition codes used on DA Forms, records, and DD Forms 1574, 1574–1, 1575, 1575–1, 1576, 1576–1, 1577, 1577–1, 1577–2, 1577–3 contained in this pamphlet (see table C–1).

Table C–1
Supply Condition Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Serviceable (issuable without qualification).</td>
<td>New, used, or repaired materiel that is serviceable and issuable to all customers without limitation or restriction. Includes materiel with more than 6 months' shelf life remaining.</td>
</tr>
<tr>
<td>B</td>
<td>Serviceable (issuable without qualification)</td>
<td>New, used, or repaired materiel that is serviceable and issuable for its intended purpose. However, it is restricted from issue to specific units, activities, or geographical areas because of its limited usefulness or short service life expectancy. Includes materiel with 3 through 6 months' shelf life remaining.</td>
</tr>
<tr>
<td>C</td>
<td>Serviceable (priority issue)</td>
<td>Items that are serviceable and issuable to selected customers, but must be issued, when feasible, before condition A and B materiel to avoid loss as a usable asset. Includes materiel with less than 3 months' shelf life remaining.</td>
</tr>
<tr>
<td>D</td>
<td>Serviceable (test/modification)</td>
<td>Serviceable items that require test, alteration, modification, conversion, or disassembly.</td>
</tr>
<tr>
<td>E</td>
<td>Unserviceable (limited restoration)</td>
<td>Items that involve only limited expense or efforts to restore to serviceable condition. This is done in the storage activity. Economically reparable items that need repair, or overhaul.</td>
</tr>
<tr>
<td>F</td>
<td>Unserviceable (reparable)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Explanation</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>G</td>
<td>Unserviceable (incomplete)</td>
<td>Items that need other parts or components to complete the end item before issue.</td>
</tr>
<tr>
<td>H</td>
<td>Unserviceable (condemned)</td>
<td>Items that are unserviceable and do not meet repair criteria, contain no components or assemblies to be reclaimed, and are of no value to the Government except for material content.</td>
</tr>
<tr>
<td>J</td>
<td>Suspended (in stock)</td>
<td>Items in stock that have been suspended from issue pending condition classification or analysis, when the true condition is not known.</td>
</tr>
<tr>
<td>K</td>
<td>Suspended (returns)</td>
<td>Items returned from customers and users suspended from issue pending inspection and condition classification.</td>
</tr>
<tr>
<td>L</td>
<td>Suspended (litigation)</td>
<td>Items held pending litigation or negotiation with contractors common carriers. Includes shipments with shortages, overages, defects, or other conditions that call for negotiation or litigation.</td>
</tr>
<tr>
<td>M</td>
<td>Suspended (in work)</td>
<td>Items on inventory control record but that have been delivered and accepted by an Army or DOD maintenance facility or a contractor’s plant for processing.</td>
</tr>
<tr>
<td>N</td>
<td>Suspended (ammunition suitable for emergency combat use only)</td>
<td>Ammunition stocks suspended from issue except for emergency combat use.</td>
</tr>
<tr>
<td>P</td>
<td>Unserviceable (reclamation)</td>
<td>Items that are unserviceable, uneconomically reparable because of physical inspection, tear down, or engineering decision, item contains serviceable components or assemblies that may be reclaimed.</td>
</tr>
<tr>
<td>R</td>
<td>Suspended (reclaimed items, awaiting condition determination)</td>
<td>Assets turned in by reclamation activities that do not have the capability (e.g., skills, personnel, or test equipment) to determine the material condition. Actual condition will be determined before induction into maintenance activities for repair/ modification.</td>
</tr>
</tbody>
</table>
| S    | Unserviceable (Scrap)                      | Items that have no value except for its basic material content. No stock will be recorded as on hand in condition code S. This is used only on transactions that involve shipments to DRMOs.

**Appendix D**

**Department of the Army list of Aircraft and Aviation Associated Equipment on which forms and records are to be maintained**

D–1. This appendix provides a list of aviation equipment and specifies the DA forms on which data are to be recorded, maintained, and/or sent through command designated data reduction centers to LOGSA and AMCOM.

D–2. The forms called for are identified opposite the nomenclature of the equipment in table D-1.

D–3. Aircraft and other aviation equipment are arranged by equipment category code (ECC). The column headings are ECC, nomenclature, DA Forms to be maintained, and the end item code (EIC). The ECC is a two-character alpha designation that shows the general and subgrouping for the aviation equipment. The EIC is a three-character alpha and/or alpha/numerical designation that is used in an automated data processing system. Three asterisks indicate EIC not assigned.

D–4. The purpose, detailed needs, use, preparation, processing, and disposition of the DA forms are contained in chapters 1, 2, 3, 4 and 5.

D–5. Commanders may direct the preparation of TAMMS-A forms not listed for equipment for local management purposes. However, all copies of forms used will be retained within the command.

D–6. DA Form 2408-5 and DA Form 2408-5-1 will be filled out only upon receipt of a MWO or completion of a SOF message, or aviation safety action message.

D–7. DA Form 2408-13-2 will be filled out only when clearing major faults and deficiencies listed on DA Form 2408-13-1 and DA Form 2408-13-3.

D–8. DA Form 2408-13-3 is not added to this Appendix because this form is required for all equipment technical inspections.

D–9. DA Form 2408-14-1 will be filled out when the first uncorrected fault or deferred maintenance condition exists.

D–10. DA Form 2408-20 will be filled out on an as-needed basis as directed by the publications that apply.

D–11. A list of aircraft and their NSNs is provided in table E-1.
Table D–1  
DA FORMS TO BE MAINTAINED (page 1)

ECC	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	1	2	3	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1

<table>
<thead>
<tr>
<th>EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIXED WING (STANDARD)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CARGO</strong></td>
</tr>
<tr>
<td>C-12C</td>
</tr>
<tr>
<td>C-12D</td>
</tr>
<tr>
<td>C-12F</td>
</tr>
<tr>
<td>C-12L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>RECONNAISSANCE</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>RC-12D</td>
</tr>
<tr>
<td>RC-12G</td>
</tr>
<tr>
<td>RC-12H</td>
</tr>
<tr>
<td>RC-12K</td>
</tr>
<tr>
<td>RC-12P</td>
</tr>
<tr>
<td>RU-21H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>UTILITY</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-18</td>
</tr>
<tr>
<td>U-21F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>FIXED WING (NON-STANDARD)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>C-20E</td>
</tr>
<tr>
<td>C-21</td>
</tr>
<tr>
<td>C-23</td>
</tr>
<tr>
<td>C-26</td>
</tr>
<tr>
<td>CE-31</td>
</tr>
<tr>
<td>EO-3E</td>
</tr>
<tr>
<td>O-5A</td>
</tr>
<tr>
<td>RC-7B</td>
</tr>
<tr>
<td>UV-20</td>
</tr>
</tbody>
</table>

DA PAM 738–751 • 15 March 1999  251
Table D–1
DA FORMS TO BE MAINTAINED (page 2)

252

DA PAM 738–751 • 15 March 1999


### Table D–1
DA FORMS TO BE MAINTAINED (page 3)

<table>
<thead>
<tr>
<th>ECC</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

### TRANSPORT

<table>
<thead>
<tr>
<th>CH–7D</th>
<th>X</th>
<th>RCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCH–7D</td>
<td>X</td>
<td>RCD</td>
</tr>
<tr>
<td>MEI–7E</td>
<td>X</td>
<td>RCE</td>
</tr>
</tbody>
</table>

### UTILITY

<table>
<thead>
<tr>
<th>UH–1H</th>
<th>X</th>
<th>RUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>JH–1H</td>
<td>X</td>
<td>RUA</td>
</tr>
<tr>
<td>UH–1M</td>
<td>X</td>
<td>RUC</td>
</tr>
<tr>
<td>JH–1M</td>
<td>X</td>
<td>RUC</td>
</tr>
<tr>
<td>UH–1V</td>
<td>X</td>
<td>RUE</td>
</tr>
<tr>
<td>UH–60A</td>
<td>X</td>
<td>RSA</td>
</tr>
<tr>
<td>JH–60A</td>
<td>X</td>
<td>RSA</td>
</tr>
<tr>
<td>UH–60L</td>
<td>X</td>
<td>RSA</td>
</tr>
<tr>
<td>MEI–60K</td>
<td>X</td>
<td>RSM</td>
</tr>
</tbody>
</table>

### ROTARY WING
(NON-STANDARD)

<table>
<thead>
<tr>
<th>AH–6C</th>
<th>X</th>
<th>RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH–6B</td>
<td>X</td>
<td>R6A</td>
</tr>
<tr>
<td>JCH–3E</td>
<td>X</td>
<td>RSA</td>
</tr>
<tr>
<td>MEI–6B</td>
<td>X</td>
<td>RSA</td>
</tr>
<tr>
<td>MEI–6B</td>
<td>X</td>
<td>RSA</td>
</tr>
<tr>
<td>NHE–1H</td>
<td>X</td>
<td>RBA</td>
</tr>
<tr>
<td>TH–18</td>
<td>X</td>
<td>RAA</td>
</tr>
<tr>
<td>YEH–50H</td>
<td>X</td>
<td>RSB</td>
</tr>
</tbody>
</table>

### Table D–1
DA FORMS TO BE MAINTAINED (page 4)

ECC	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	3	4	4	4	5	5	6	6	7	8	9	9	9	9	9	9	9	9
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	2	3	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1

### SIMULATOR

<table>
<thead>
<tr>
<th>2H24</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H31</td>
<td>X</td>
</tr>
<tr>
<td>2H33</td>
<td>X</td>
</tr>
<tr>
<td>2H38</td>
<td>X</td>
</tr>
<tr>
<td>2H40</td>
<td>X</td>
</tr>
</tbody>
</table>

### ANGULAR

<table>
<thead>
<tr>
<th>ANGULAR</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVG AN/PVS-5 SERIES</td>
<td>X</td>
</tr>
<tr>
<td>NVG IMAGING SYM</td>
<td>X</td>
</tr>
<tr>
<td>AN-AVS-6 SERIES</td>
<td>X</td>
</tr>
</tbody>
</table>

### HOIST

<table>
<thead>
<tr>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

---

DA PAM 738-751 • 15 March 1999

253
### Appendix E

#### List of Aircraft and their National Stock Numbers

E-1. The aircraft mission, design, series (MDS), and NSN for Army aircraft are shown in this appendix for easy reference when filling out DA Forms and Records covered in this pamphlet (see table E-1 below).

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Stock No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH-1E</td>
<td>1520-01-192-2478</td>
</tr>
<tr>
<td>AH-1F</td>
<td>1520-01-168-4260</td>
</tr>
<tr>
<td>AH-1P</td>
<td>1520-01-168-4259</td>
</tr>
<tr>
<td>AH-1S</td>
<td>1520-00-504-9112</td>
</tr>
<tr>
<td>AH-64A</td>
<td>1520-01-016-9519</td>
</tr>
<tr>
<td>AH-64D</td>
<td>1520-01-355-8250</td>
</tr>
<tr>
<td>C-12C</td>
<td>1510-01-070-3661</td>
</tr>
<tr>
<td>C-12D</td>
<td>1510-01-087-9129</td>
</tr>
<tr>
<td>C-12F</td>
<td>1510-01-235-5840</td>
</tr>
<tr>
<td>C-12L</td>
<td>1510-01-265-2043</td>
</tr>
<tr>
<td>CH-47C</td>
<td>1520-00-871-7308</td>
</tr>
<tr>
<td>CH-47D</td>
<td>1520-01-088-3669</td>
</tr>
<tr>
<td>EH-1H</td>
<td>1520-00-368-8442</td>
</tr>
<tr>
<td>EH-1X</td>
<td>1520-01-042-9396</td>
</tr>
<tr>
<td>EH-60A</td>
<td>1520-01-082-0886</td>
</tr>
<tr>
<td>MH-47E</td>
<td>1520-01-282-3747</td>
</tr>
<tr>
<td>MH-60K</td>
<td>1520-01-282-4051</td>
</tr>
<tr>
<td>OH-58A</td>
<td>1520-00-169-7137</td>
</tr>
<tr>
<td>OH-58C</td>
<td>1520-01-020-4216</td>
</tr>
<tr>
<td>OH-58D</td>
<td>1520-01-125-5476</td>
</tr>
<tr>
<td>OH-6A</td>
<td>1520-00-918-1523</td>
</tr>
<tr>
<td>RC-12D</td>
<td>1510-01-131-8262</td>
</tr>
<tr>
<td>RC-12G</td>
<td>1510-01-215-2942</td>
</tr>
<tr>
<td>RC-12H</td>
<td>1510-01-214-8354</td>
</tr>
<tr>
<td>RC-12K</td>
<td>1510-01-235-5839</td>
</tr>
<tr>
<td>RC-12P</td>
<td>1510-01-070-0805</td>
</tr>
<tr>
<td>RU-21H</td>
<td>1510-00-394-3320</td>
</tr>
<tr>
<td>RV-1D</td>
<td>1510-00-368-8440</td>
</tr>
<tr>
<td>U-21A</td>
<td>1510-00-933-8223</td>
</tr>
<tr>
<td>U-21F</td>
<td>1510-00-169-0295</td>
</tr>
<tr>
<td>U-21G</td>
<td>1510-00-140-1627</td>
</tr>
<tr>
<td>UH-1H</td>
<td>1520-00-087-7637</td>
</tr>
<tr>
<td>UH-1M</td>
<td>1520-00-809-2631</td>
</tr>
<tr>
<td>UH-1V</td>
<td>1520-01-043-4949</td>
</tr>
<tr>
<td>UH-60A</td>
<td>1520-01-035-0266</td>
</tr>
<tr>
<td>UH-60L</td>
<td>1520-01-298-4532</td>
</tr>
<tr>
<td>UV-18A</td>
<td>1510-01-011-1462</td>
</tr>
</tbody>
</table>
Glossary

Section I
Abbreviations

A/C
Aircraft

ACE
Aircraft Condition Evaluation

ADPE
Automated Data Processing Equipment

ALSE
Aviation Life Support Equipment

AMC
U.S. Army Materiel Command

AMDF
Army Master Data File

AMSS
Army Materiel Status System

AOAP
Army Oil Analysis Program

APU
Auxiliary Power Unit

ARNGUS
Army National Guard of the United States

ASAM
Aviation Safety Action Message

AVCRAD
Aviation Classification Repair Activity Depot

AVIM
Aviation Intermediate Maintenance

AVUM
Aviation Unit Maintenance

BDAR
battle damage assessment and repair

CAGE
Contractor and Government Entity Code (Manufacturer’s Code)

CC
condition change

CCAD
Corpus Christi Army Depot

CDR
commander

CF
carried forward

CG
center of gravity

CL
checklist

DA
Department of the Army

DLR
depot level reparable

DMN
document management number

DMWR
Depot Maintenance Work Requirement

DOD
Department of Defense

DODAAC
Department of Defense Activity Address Code

DRMO
Defense Reutilization and Marketing Office

DSN
Defense Switched Network

EAWBS
Ewards Automated Weight and Balance System

ECP
engineering change proposal

EGT
Exhaust Gas Temperature

EIC
End Item Code

EIR
Equipment Improvement Recommendation

ELT
Emergency Locator Transmitter

ETI
elapsed time indicator

FAA
Federal Aviation Administration

FAT
free air temperature

FCC
Fire Control Computer

FMC
Fully Mission Capable

FOD
Foreign Object Damage

FOIA
Freedom of Information Act

HIT
Health Indicator Test

HSF
hot section factors

IAW
in accordance with

ICAO
International Civil Aviation Organization

IPS
inches per second

LAR
Logistic Assistance Representative

LAS
Logbook Automated System

LCF
Legitimate Code File

LIF
light interface filter

LOGSA
Logistics Support Activity

LRU
Line Replaceable Unit

MACOM
Major Army Command

MAP
Military Assistance Program

MAOT
Maximum Allowable Operating Time

MARC
manpower requirement criteria

MDS
mission, design, series

MFP
Materiel Fielding Plan

MMC
Materiel Management Center

MMS
mast mounted sight

MOC
maintenance operational check

MR
Milliradian

MRM
maintenance reporting and management

MTA
maintenance training airframe

MTF
maintenance test flight

MWO
modification work order
Section II
Terms

Army aviation flight activity
An Army National Guard TDA activity that provides AVUM level functions in support of Army National Guard aviation assets.

Army aviation operating facility
An Army National Guard TDA activity that provides AVUM level functions.

NICP
National Inventory Control Point

NMC
not mission capable

NMCM
not mission capable maintenance

NMCS
not mission capable supply

NMP
National Maintenance Point

NOR
Notice of Revision

NRTS
not repairable this station

NSN
National Stock Number

NVG
Night Vision Goggle(s)

OAT
outside air temperature

ORF
operational readiness float

ORG WON
organization work order

PAC
power assurance check

PCW
previously complied with

PD
priority designator

PID
personnel identifier

PMC
partial mission capable

PMD
preventive maintenance daily

PMS
preventive maintenance services

PN
part number

PNVS
Pilot Night Vision Sensor

PPM
Progressive Phase Maintenance

POMCUS
prepositioning of materiel configured to unit sets

PQDR
Product Quality Deficiency Report

PSI
pounds per square inch

PTIT
power turbine inlet temperature

QC
quality control

RC
Retirement Life Component; Replacement Component

RCF
repair cycle float

RCM
reliability centered maintenance

ROD
Report of Discrepancy

RPM
revolutions per minute

RX
reparable exchange

SAMS
Standard Army Maintenance System

SAILS
Standard Army Intermediate Level Supply

SAMIS
Supply Accounting and Management Information System

SARSS
Standard Army Retail Supply System

SFDLR
Stock Funded Depot Level Reparable

SMR
source, maintenance, and recoverability

SOF
safety-of-flight

SOU
safety-of-use

SSA
Supply Support Activity

SSAN
Social Security Account Number

STAMIS
Standard Army Management Information System

TADS
Target Acquisition Designation Sight

TB
Technical Bulletin

TBO
time between overhaul

TC
time change

TEAC
Turbine Engine Analysis Check

TGT
turbine gas temperature

TI
technical inspector

TIPID
Technical Inspector Personnel Identifier

TMDE
test, measurement, and diagnostic equipment

TM
Technical Manual

TRADOC
U.S. Army Training and Doctrine Command

TSN
time since new

TSO
time since overhaul

TTV
Target Torque Value

TWX
Teletype (message)

UIC
Unit Identification Code

ULLS-A
Unit Level Logistics System-Aviation

WB
weight and balance

WNRC
Washington National Records Center

WOLF
Work Order Logistics File

WON
work order number

WUC
Work Unit Code
Army aviation support facility
An Army National Guard TDA maintenance activity that provides AVIM and AVCRAD authorized AVIM level functions to support Army National Guard aviation assets.

Army Oil Analysis Program
Part of a DOD-wide effort to detect impending equipment component failures and determine lubricant condition through on-line and laboratory evaluation of used oil samples.

Army Oil Analysis Program Feedback
Maintenance and disassembly inspection data regarding a oil sample from an engine or other major component or assembly furnished by the operating and maintenance activities to the Army Oil Analysis Program.

Assembly
A combination of components or modules, and parts used as a portion of, and intended for installation in an aircraft or associated equipment end item; for example, engine, transmission, and rotor head.

Aviation classification and repair activity depot
An Army National Guard TDA maintenance activity that provides AVIM and authorized depot level functions.

Aviation-associated equipment
Aviation-associated equipment or "aviation equipment" or "equipment" are used frequently in this pamphlet and other maintenance technical manuals for ease of writing and reading prescribed procedures and instructions. In most instances the term will be construed to mean related mission equipment, such as, armament systems, electronic and other equipment, night vision goggles, aircraft training devices, simulators and aviation life support equipment managed by AMC. The term will also refer to uninstalled assemblies, subassemblies, and components/modules that are being processed within intermediate or depot support maintenance shops/activities.

Aviation life support equipment
The equipment used in case of flight operation emergencies to lend support to make it possible for aircrew members and passengers of Army aircraft to endure and to complete assigned mission. ALSE is used in case of in-flight and other crises to aid and support occupants of aircraft in survival. It is used to provide ways of safe and sure escape, descent, and recovery during life threatening situations.

Calibration
The comparison of an instrument (measurement standard or item of test, measurement, and diagnostic equipment) of unverified accuracy with an instrument of known and greater accuracy to detect and correct any discrepancy in the accuracy of the unverified instrument.

Commander
A person of the armed forces with vested authority to direct, coordinate, and control military forces of a unit/aviation maintenance activity. The commander will—

a. Be held accountable for the safety of all personnel under his/her control and the status of aircraft and equipment.

b. Emphasize the importance of maintenance and ensure that subordinates are held accountable for the conduct of aviation equipment maintenance operations.

c. Provide leadership, technical supervision, and management control of aviation equipment maintenance program.

d. Emphasize the conduct and supervision of preventive maintenance checks and services performed at the unit level; preventive maintenance and repair at intermediate level; and repair, overhaul, or rebuild maintenance at depot level.

e. Establish, maintain, and conduct training of leaders in the maintenance organization to properly supervise maintenance operations and to motivate subordinates to properly and safely use and maintain aviation equipment.

f. Recommend improvements of the Army aviation maintenance system.

g. Ensure that the submission of deficiency reports is prepared and submitted per chapter 3 of this pamphlet.

h. Establish an aggressive awards program for air crewmembers and aviation maintenance/quality control personnel.

Component/Module
A combination of parts mounted together in manufacture that may be tested, repaired, or replaced as a unit; for example, starter, generator, fuel pump, line replaceable unit, printed circuit board. The term "module" is normally associated with electronic equipment or major components of T700 series gas turbine engines.

Component Overhaul
Depot level maintenance performed to restore a TC item, with a TBO assigned, to a serviceable condition, as prescribed in the appropriate Depot Maintenance Work Requirement (DMWR). The item is subjected to a complete disassembly and inspection. All defective or excessively worn parts are replaced with new or reconditioned items. This action will "zero" time since overhaul, but time since new will not change.

Component Rebuild
Depot or contractor maintenance performed to restore an item to a like new condition in appearance, performance, and life expectancy. This is done by complete disassembly, inspection, and replacing all worn and unserviceable elements with new parts or parts that have been reworked to original manufacturing specifications. When an item is rebuilt it starts a new life cycle. This action will "zero" time since new, time since overhaul, and number of previous overhauls.

Component Repair
Maintenance performed to restore a TC, RC, or CC item to serviceable condition by correcting a specific failure or unserviceable condition. This allows a TC or RC item to complete its TBO/MAOT cycle. These actions will not "zero" time since new or time since overhaul.

Condition Change (CC) Item
An item that is changed or repaired on an "as needed" basis. This item does not have a TBO assigned, therefore it is not overhauled.

Contractor and Government Entity Code
CAGE code(s) are assigned to manufacturers/nonmanufacturers organizational entities/contractors. The primary use of the CAGE code is in machine accounting operations related to support management programs, such as cataloging and standardization. The CAGE code is used in conjunction with the firm’s reference number relating the firm with the item of supply, production, or design in cataloging and other supply records, as well as on engineering documentation. These codes are essential to contract/purchase agreements and various activities/agencies automated data processing systems. The CAGE codes, reference number (P/N), and serial numbers are used to screen item identifications against each other primarily to detect duplication.

Contract maintenance
Any materiel maintenance operation performed under contract by commercial organizations (including the original manufacturers of the materiel). (See DOD 4151.16.)

Controlled exchange
Removal of serviceable parts, components/modules and assemblies from unserviceable but economically repairable aircraft or components/modules, and their immediate or planned reuse in restoring a like item of equipment to a mission capable condition.

Critical Characteristic
Any feature throughout the life cycle of a FSCAP, such as dimension, tolerance, finish, material or assembly, manufacturing or inspection process, operation, field maintenance or depot overhaul requirement which if nonconforming, missing, or degraded could cause the failure or malfunction of a FSCAP.

Deferred Maintenance
Authorized delay of maintenance/repair of uncorrected faults. The commander or commander’s designated representative must authorize the delay in correcting the fault.

a. Required maintenance/repair can be deferred only when the fault will not affect the
safe operation of the aircraft, or the safety of the pilot and crew.

b. Repair on Red "X" status symbol deficiencies will not be deferred.

c. A status symbol circled Red "X" deficiency repair may be deferred, but for a limited time only. Only the commander, the maintenance officer, or higher authority can authorize delay of maintenance on circled Red "X" deficiencies.

d. Corrections with the required parts available will not normally be deferred. When there are minor corrections for faults that are labor intensive, the repair may be deferred until the next scheduled maintenance inspection.

Deficiency

A fault, defect, or problem so severe that it causes an item, system, or subsystem to be inoperative or inaccurate.

Deficiency reports

The prescribed means for users of Army aircraft and associated equipment to report faults, failures, and problems in design, operation, maintenance, manufacture, and overhaul or rebuild of aviation end items and components. Deficiency reports are submitted according to instructions in chapter 3.

Deficiency report exhibit

The item reported as being deficient, or a sample item that represents the reported deficient condition, that can be torn down and analyzed to determine the possible cause of the defect.

Department of Defense Activity Address Code

The DODAAC is a six-digit code that gives a delivery address for supplies and equipment.

Depot Maintenance Work Requirements

A maintenance serviceability standard for depot maintenance operations. The standard prescribes the following and other essential factors to ensure that an acceptable and cost-effective product is obtained:

a. Scope of work to be performed on an item by depot level maintenance facilities, organic or contract support.

b. Types and kinds of material to be used.

c. Quality of workmanship.

d. Repair methods, procedures, and techniques.

Deficient representative

Someone authorized to sign for and/or represent the commander or the person in equal management positions in contract support maintenance activities. This pamphlet sometimes asks for the signature of the commander or the commander’s designated representative. The commander will use a Memorandum (letter), orders, or DA Form 1687 to appoint designated representatives.

a. The commander holds full responsibility for the safety of personnel and the status of aircraft and equipment. Designated representatives should be knowledgeable, experienced, and readily available to the people needing their signatures and help; therefore, they must be picked carefully.

b. Changing a status symbol Red "X" to a circled Red "X" or Red "." for limited operations may be dangerous. As such, the commander should limit the number of designated representatives to a minimum, consistent with unit mission needs.

c. Due to the operational safety considerations, the Commander should limit the number of designated representatives authorized to change Red "X" status symbols, for one-time evacuation missions, to include only a qualified maintenance officer and/or qualified test pilots.

Document Management Number

The NMP control number assigned to the Category I or Category II PQDR for accountability and status reporting.

Electromagnetic environmental effect (E3)

Any failure (or serious effect) apparently caused by, or related to, radio waves, electromagnetism, voltage or current pulses (static discharge, lightning, electromagnetic pulse, or transient electricity), from whatever source. Example: A malfunction of any electronic/electrical equipment or system that occurs after exposure to electromagnetic energy. The effect may be transitory or permanent. Sources of energy may be radio transmissions, radar, high power electrical generator transmission equipment, motors, generators, electromagnets, static electricity, lightning, magnetic storm, or hostile radio-electronic combat. Effects observed may take the form of a distorted display, intermittent/inappropriate indication of warning noise, interference, break lock or sync, uncommanded control actions, system failure, burnout, or detonation.

Equipment category code

A two-positioned alphabetical code. The first letter identifies the primary category of equipment: A = Aircraft, B = Air Defense Systems, F = Tanks, G = Combat Vehicles, and H = Tactical Vehicles, etc. The second letter identifies a specific type of equipment within the primary category, AF = Aircraft; Fixed wing, AR = Aircraft; Rotary wing, GA = Self-propelled Howitzers, HB = Truck 1/4 ton, etc. The two-position ECC is used in automated data processing systems to produce the complete description of an item of equipment by make, model, nomenclature, line number, and NSN if desired or needed. It is also entered in specified blocks or positions on manually filled forms and records.

Flight Safety Critical Aircraft Parts

Any aircraft part, assembly, or installation containing a Critical Characteristic whose failure, malfunction, or absence could cause a catastrophic failure resulting in loss or serious damage to the aircraft or an uncommanded engine shutdown resulting in an unsafe condition.

Fault

A term used to indicate that a piece of equipment has a deficiency or shortcoming.

Flight

Flight starts when an airplane begins to move forward on the takeoff roll or when a helicopter lifts off the ground. The flight ends when the aircraft has landed and the engines are stopped or the flying crew changes.

Fully mission capable

Aircraft is fully mission capable when it can perform all its units assigned combat missions.

a. FMC aircraft must be complete and fully operable with no Red "X" symbol on DA Form 2408-13 or other related forms.

b. The terms ready and fully available and fully mission capable refer to the same status: Aircraft is on hand and able to perform its combat missions.

Ground support equipment

Includes all AMCOM managed aircraft ground support equipment needed to maintain aircraft and aviation associated equipment. Aviation ground support equipment maintenance will be documented per DA Pamphlet 738-750.

Initial failure

Failure upon initial use or test caused by other than accident, misuse, improper installation, improper operation, unauthorized repair, or unauthorized alteration.

Installation critical characteristics

Critical characteristics that are not introduced during the manufacture of a part but are critical for assembly/installation; for example, proper torque.

Logistic Assistance Representative

An individual assigned by AMC and AMCOM to advise, train and provide logistic assistance on aircraft and other aviation equipment.

Maintenance

The function of keeping aircraft, components/modules, assemblies, subassemblies, and repair parts and other aviation equipment in an operational status; restoring the material to a serviceable condition; and updating and upgrading its functional utility through modification and product improvement.
maintenance functions are inspect, test, service, adjust, calibrate, install, remove, replace, repair, modernize, modify, overhaul and rebuild.

Major fault
A major fault is any fault, deficiency, or condition that makes an aircraft unsafe to fly or requires additional related maintenance actions to clear the fault, deficiency, or condition.

Manufacturing critical characteristics
Critical characteristics produced during the manufacturing process.

Materiel condition
The state that determines the ability of an item to accomplish its intended function.

Mission day
A mission day is defined as a 24-hour period starting at aircraft takeoff of the first mission. The 24-hour mission day may be extended if necessary to complete the mission, however, planned overflights of the 24-hour mission day are not encouraged and should be minimized. Aircraft under the PMD inspection system will additionally comply with the following instructions: When aircraft flight operations (one or more) are performed, and a daily inspection (PMD) is completed, the term Mission Day is defined as any 24-hour period beginning at the time of aircraft takeoff, first flight after completion of the last daily inspection. Note: Should the aircraft be airborne at the end of the 24-hour period, after landing a daily inspection is due before next flight.

a. Example 1: The daily inspection is completed at 1900 hours, 12 Mar 1991, take off is 2100 hours for 6 hours of night flight training. The aircraft then lands at 2400 hours to refuel, takes off again at 0100 hours, and flies until 0400 hours. The aircraft is not scheduled to fly until 2200 hours, 13 Mar 1991. This is a Mission Day, and a daily inspection is needed before next flight.

b. Example 2: The daily inspection is completed at 1500 hours, 16 Mar 1991, take off is 1000 hours, 17 Mar 1991 for 8 hours of combat support. The aircraft lands every 2 hours to refuel, etc., and is scheduled to fly until 1900 hours. The aircraft lands to refuel, etc., at 0900 hours, 18 Mar 1991 and is scheduled to resume combat support flight. This is a Mission Day, and a daily inspection is needed before next flight.

Mission related equipment
Equipment installed in or on an aircraft to accomplish one or more types of missions, for example, a 30mm cannon, the electronic target acquisition designation sight (TADS), and the pilot night vision sensor (PNVS) installed on a AH-64A helicopter to perform combat gunnery missions.

National Maintenance Point
An activity established by AMCOM (materiel developer) to facilitate the maintenance function for aircraft and associated equipment.

Not mission capable
Aircraft that are not flyable because of scheduled or unscheduled maintenance, outstanding emergency MWO/TBs and emergency SOF messages, or lack of repair parts. Aviation associated equipment that is not operational because of scheduled or unscheduled maintenance, outstanding emergency MWO/TBs and emergency SOF, one-time inspection SOU message, or lack of repair parts. Refer to AR 700-138 to determine readiness status of equipment.

Not Mission Capable Maintenance
Aircraft and associated equipment having scheduled or unscheduled maintenance performed, complying with outstanding emergency MWO/TBs, emergency SOF messages, or one-time inspection SOU message applied or complied with. Refer to AR 700-138 to determine readiness status of equipment.

Not Mission Capable Supply
Aircraft and aviation associated equipment that are not flyable or operable because there are no repair parts for needed repair. Refer to AR 700-138 to determine readiness status of equipment.

Pacing Items
These are major weapons or equipment systems of such importance that they are subject to continuous monitoring and management at all levels of command. Pacing items are identified in the Units TO&E. Pacing items are noted on DA Form 2407.

Personnel identifier (PID)
A six digit code that gives the identification of each person that operates, maintains, and stores aircraft and aviation associated equipment. The code is made up of the first and last name initials, plus the last four digits of the persons social security account number.

Product quality deficiency reports
The prescribed means for users of Army aircraft and associated equipment to record and send product quality deficiency data. Product quality deficiency is a nonconforming condition that limits or prevents the product from fulfilling its purpose. This includes defects in design, specification, material, manufacture, overhaul, rebuild, and workmanship.

Project manager/supervisor
A person in charge of a civilian work force with vested authority to direct, coordinate, and control the work force of an aviation contract support maintenance unit/activity. The project manager/supervisor will—

a. Emphasize the importance of maintenance and ensure that subordinates are held accountable for the conduct of aviation equipment maintenance operations.

b. Provide leadership, technical supervision, and management control of aviation equipment maintenance program.

c. Emphasize the conduct and supervision of preventive maintenance checks and services performed at the unit level; preventive maintenance and repair at intermediate level; and repair, overhaul, or rebuild maintenance at depot level.

d. Establish, maintain, and conduct training of leaders in the maintenance organization to properly supervise maintenance operations and to motivate subordinates to properly and safely use and maintain aviation equipment.

e. Recommend improvements of the Army aviation maintenance system.

f. Ensure that the submission of deficiency reports are prepared and submitted per chapter 3 of this pamphlet.

Related maintenance actions
Additional related maintenance actions/work necessary and accomplished while clearing major faults/deficiencies, and conditions written up on DA Form 2408-13.1 or DA Form 2408-13.3.

Remark(s)
To say or write briefly a comment, observation or expression of something noticed or worth mentioning.

Reportable component
A component or repair part that is classified as a TC (TBO), RC (MAOT), or selected CC items that have been selected by AMCOM for accumulation and reporting of maintenance data on the DA Form 2410. Reportable components/modules are listed in TB 1-1500-341-01 or for ULLS-A units in the component LCF.

Retirement Change (RC) Item
An item that has been assigned a safe maximum allowable operating time since new, that the item can safely be operated before it must be removed from service, mutilated, and lost to the Army inventory. This item can be repaired prior to reaching it’s MAOT, normally RC items will not be overhauled, and must be removed from service when they reach their MAOT.

Stock funded depot level reparable
An item with a maintenance repair code of D or L or an automatic return item code of C, E, R, or S.

Technical inspection
A visual, touch and feel inspection made by a technically qualified person (normally a quality control technical inspector). These inspections are performed on aircraft and aviation associated equipment per maintenance performance standards established in the technical manuals that apply to the equipment. Technical inspections will also be done on aviation equipment forms, records, and files.
maintenance operations and supply facilities, and general housekeeping at all flight line areas. The results of the technical inspections will be used to:

a. Assure that quality maintenance is performed.

b. Determine serviceability.

c. Determine the economical reparability of the equipment.

d. Estimate cost of damage resulting from incidents/accidents.

e. Determine how many manhours and repair parts are needed to restore equipment to a serviceable condition.

f. Determine cause of the unserviceable condition of the equipment.

**Time Between Overhaul (TBO)**
The established maximum allowable operating time (MAOT) since new or overhaul, that an item can be operated before it must be removed from service and returned to a depot level facility for overhaul. Time since new will not be changed, time since overhaul will be "zeroed" and number of previous overhauls will be increased by one after an overhaul.

**Time Change (TC) Item**
An item that has a fixed operating time between overhauls based of safety or design limitations. The item must be replaced with a new or fully serviceable item after the specified time. The item will then be overhauled at a depot level facility.

**Total Cumulative counts and hours**
The total cumulative LCF-1, LCF-2, T/TI and operating hours that a T-700 series engine, module, component, or subcomponent has accumulated since new regardless of history recorder changes. Unit identification code A six-character code assigned to a specific unit.a. When this pamphlet asks for a UIC, all units, organizations, and activities will use their own UIC.b. Contractors, manufacturers, and commercial activities do not have UICs. They will use the Contractor and Government Entity (CAGE) when a UIC is called for. Put the letter "K" in front of the CAGE. For example, Bell Helicopter, CAGE 97499, will be turned into a contractor UIC, K97499.

**Weapons/Equipment System Designator Code**
A two-character code that is given to equipment for supply use. The code is put on the DA Form 2407 and supply requests. You will find these codes in AR 725-50 and DA Pam 710-2-1.

**Work day**
The normal duty shift set by the local command. For the purposes of this pamphlet, a normal duty shift will not exceed a 12-hour period.

**Work Unit Code**
The Work Unit Code (WUC) is a coding structure developed for Army aircraft components/modules to show the relationship of a single component to a major component/module. Work Unit Codes are established to identify functional grouping, major sections, systems installations or major components/modules, specific major components/modules, and subcomponents of the aircraft. These codes are listed in TB 1-1500-341-01 (Aircraft Components Requiring Maintenance Management and Historical Data Reports).
Index
This index contains no entries.
# METER TRACKED COMPONENT RECORD

For use of this form, see DA PAM 738-751; the proponent agency is DCSLOG

<table>
<thead>
<tr>
<th>1. NOMENCLATURE</th>
<th>2. NSN</th>
<th>3. PART NUMBER OR MODEL</th>
<th>4. SERIAL NUMBER</th>
<th>5. WUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. ACFT MODEL</td>
<td>7. ACFT SERIAL NUMBER</td>
<td>8. ACFTS HRS INSTALLED</td>
<td>9. METER READINGS AT INST</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. NOMENCLATURE AND WUC</th>
<th>PIN AND NSN</th>
<th>COMPONENT SERIAL NUMBER OR LOCATION</th>
<th>NOMEN INST HRS</th>
<th>COMP INST HRS</th>
<th>REPLACE LIFE</th>
<th>REPLACE DUE METER READING</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>h</td>
<td>i</td>
</tr>
</tbody>
</table>

**DA FORM 2408-33-R, OCT 97**
<table>
<thead>
<tr>
<th>NOMENCLATURE AND WUC</th>
<th>P/N AND NSN</th>
<th>COMPONENT SERIAL NUMBER OR LOCATION</th>
<th>NOMEN INST HRS</th>
<th>COMP INST HRS</th>
<th>REPLACE LIFE</th>
<th>REPLACE METER READING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>f</td>
<td>h</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td>g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. SIGNIFICANT HISTORICAL DATA

REVERSE OF DA FORM 2408-33-R, OCT 97